SOPHIA COLLEGE (Autonomous)

Affiliated to **University Of Mumbai**

Syllabus

Program: B.Sc.

Class: T.Y.B.Sc.

Course: MICROBIOLOGY

With effect from the academic year 2020-2021

T.Y.B.Sc MICROBIOLOGY Syllabus Revised for Autonomy With effect from the Academic year 2020-2021

COURSE NAME: MICROBIOLOGY			
SEMESTER V			
PAPER CODE	PAPER TITLE	CREDITS	
SBSMCB501	MICROBIAL GENETICS	2.5 Credits	
SBSWICESUI	MICKOPHIE GENETICS	(60 lectures)	
Unit-I	DNA Replication	15 lectures	
Unit-II	Mutations and DNA Repair	15 lectures	
Unit-III	Classical Genetics	15 lectures	
Unit-IV	Horizontal gene transfer in bacteria	15 lectures	
SBSMCB502	MEDICAL MICROBIOLOGY AND	2.5 Credits	
	IMMUNOLOGY: PART-I	(60 lectures)	
Unit-I	Specific infections I	15 lectures	
Unit-II	Specific infections II	15 lectures	
Unit-III	General Immunology-I	15 lectures	
Unit-IV	General Immunology- II	15 lectures	
SBSMCB503	MICROBIAL BIOCHEMISTRY: PART-I	2.5 Credits	
		(60 lectures)	
Unit-I	Biological membranes and transport	15 lectures	
Unit-II	Bioenergetics and Bioluminescence	15 lectures	
Unit-III	Methods of studying metabolism and catabolism of carbohydrates	15 lectures	
Unit-IV	Fermentative pathways and anabolism of carbohydrates.	15 lectures	
SBSMCB504	BIOPROCESS TECHNOLOGY: PART I	2.5 Credits (60 lectures)	
Unit-I	Strain improvement of industrial microorganisms	15 lectures	
Unit-II	Upstream processing-Fermentation equipment, Sterilization, Monitoring and control.	15 lectures	
Unit-III	Downstream processing -Recovery and Effluent treatment	15 lectures	
Unit-IV	Traditional industrial fermentations : Part-I	15 lectures	
SBSMCBP5	PRACTICALS	06 Credits	
PRACTICAL – I	SECTION-1 MICROBIAL GENETICS	1.5 Credit	
PRACTICAL –II	SECTION-2 MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-I	1.5 Credit	
PRACTICAL –III	SECTION-3 MICROBIAL BIOCHEMISTRY: PART-I	1.5 Credit	
PRACTICAL –	SECTION-4	1.5 Credit	
IV	BIOPROCESS TECHNOLOGY: PART I		

Semester V

SBSMCB501- MICROBIAL GENETICS

Learning Objectives

- To understand the molecular details of DNA replication in prokaryotes and eukaryotes.
- To learn different type of mutations, mechanism of action of physical, chemical and biological mutagens and detection of mutants.
- To learn the molecular mechanisms of DNA repair processes in prokaryotes.
- To understand classical genetics by learning about model systems, extra chromosomal genetic elements and basics of recombination in bacteria.
- To develop understanding of horizontal gene transfer mechanisms in bacteria and analytical skills in solving problems on gene mapping.

Learning Outcomes

- describe the process of DNA replication in prokaryotes and eukaryotes and experiments performed by eminent scientists.
- explain different types of mutations and mode of action of different mutagens.
- explain various mechanisms of DNA repair in bacteria and relate DNA mutations and repair.
- describe characteristics of model organism and studies undertaken using different model organisms.
- describe types of plasmids and transposable genetic elements.
- explain homologous recombination and gene transfer mechanisms and apply that knowledge in solving the problems on gene mapping.

SBSMCB501	MICROBIAL GENETICS	2.5 Credits (60 lectures)
Unit-I	DNA Replication	15 lectures.
	1.1 Conservative, dispersive, semi-conservative models of DNA replication, Meselson-Stahl experiment	02
	1.2 Theta mode of replication and Cairn's experiment	01
	1.3 Arthur Kornberg and DNA Polymerase I, functions of DNA Polymerases, types of DNA polymerases in <i>E.coli</i> , proofreading mechanism	02
	1.4 Prokaryotic DNA replication: Initiation, elongation and termination of replication, Okazakis experiment, DNA	05

	polymerase III - Discovery, structure, function of each of the subunits 1.5 Eukaryotic DNA replication –Comparison of prokaryotic and eukaryotic DNA replication, replicon, Molecular details of eukaryotic replication-ORC, licensing factors, eukaryotic DNA polymerases, Replicating the ends of the chromosomes-Mechanism of telomerase	04
	1.6 Rolling circle mode of DNA replication	01
Unit –II	Mutations and DNA repair	15 lectures
	 2.1. Mutation a. Terminology: alleles, homozygous, heterozygous, genotype, phenotype, mutation, somatic mutation, germline mutation, gene mutation, chromosome mutation. b. Fluctuation test. c. Mutator genes d. Point mutation, Base pair substitution-Transition and Transversion, Missense mutation, Nonsense mutation, Silent mutation, Neutral mutation, Frameshift mutation e. Forward mutation, Reverse mutation (Reversion), Suppressor mutation- intragenic and intergenic. f. Pleiotropic mutations. g. Conditional lethal mutation- Temperature sensitive mutants h. Spontaneous mutations - DNA replication errors, Spontaneous chemical changes- Depurination and Deamination i. Induced mutations - i. Physical mutagens - Radiation ii. Chemical mutagens - Base analogs- 5-bromouracil and 2-aminopurine - Base-modifying agents - Deaminating agent (Nitrous acid), Hydroxylating agent (hydroxyl amine), Alkylating agents (EMS,MMS) - Intercalating agents iii. Biological mutagens (only examples) j. Ames test k. Phenotypic lag 	12

	1. Detection of mutants- Visible mutants, Auxotrophic	
	mutants- Penicillin enrichment technique and Replica	
	plate technique, Conditional mutants, Resistant mutants	
	2.2. DNA Repair	03
	a. Light repair or photoreactivation	
	b. Repair of alkylation damage	
	c. Base excision repair	
	d. Nucleotide excision repair	
	e. Methyl-directed mismatch repair	
	f. SOS repair	
	1	
Unit –III	Classical Genetics	15
		lectures
	3.1 Branches of Genetics	01
	a. Transmission genetics	
	b. Molecular genetics	
	c. Population genetics	
	d. Quantitative genetics	
	3.2 Model Organisms	04
	a. Characteristics of a model organism	
	b. Examples of model organisms used in study	
	c. Examples of studies undertaken using prokaryotic and	
	eukaryotic model organisms.	
	3.3 Plasmids	03
	a. Physical nature	
	b. Detection and isolation of plasmids	
	c. Plasmid incompatibility and Plasmid curing	
	d. Cell to cell transfer of plasmids	
	e. Types of plasmids	
	i. Resistance Plasmids	
	ii. Plasmids encoding toxins and other virulence	
	characteristics	
	iii. Col factor	
	iv. Degradative plasmids	
	3.4 Transposable Elements in Prokaryotes	03
	a. Insertion sequences	
	b. Transposons	
	i. Types	
	ii. Structure and properties	
	iii. Mechanism of transposition	
	iv. Transposon mutagenesis	
	c. Integrons	
1		1

	a. General/Homologous recombination i. Molecular mechanism ii. Holliday model of recombination b. Site –specific recombination	04
Unit –IV	Horizontal Gene Transfer in bacteria	15 lectures
	4.1 Genetic analysis of bacteria	02
	 4.2 Gene transfer mechanisms in bacteria a. Transformation i. Introduction and History ii. Types of transformation in prokaryotes—Natural transformation in Streptococcus pneumoniae, Haemophilus influenzae, and Bacillus subtilis iii. Mapping of bacterial genes using transformation. iv. Problems based on transformation. 	12 04
	 b. Conjugation Discovery of conjugation in bacteria Properties of F plasmid/Sex factor The conjugation machinery Hfr strains, their formation and mechanism of conjugation F' factor, origin and behaviour of F' strains, Sexduction. vi. Mapping of bacterial genes using conjugation (Wolman and Jacob experiment). vii. Problems based on conjugation 	05
	 c. Transduction i. Introduction and discovery ii. Generalised transduction iii. Use of Generalised transduction for mapping genes iv. Specialised transduction v. Problems based on transduction 	03
	4.3 Gene transfer agents (phage – like elements of genetic exchange)	01

SBSMCB502 - MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-I

Learning Objectives

- To learn about the virulence factors and other features of the pathogen.
- To learn the mode of transmission, epidemiology and modes of prophylaxis of diseases.
- To understand how to identify the likely causative agent of a disease using a few key clinical features.
- To study the detailed method of diagnosis of a disease.
- To learn the concept of how innate and adaptive immune responses of the human body coordinate to fight invading pathogens.
- To understand antigens and their role in initiating immune response.
- To learn the structure & functions of immunoglobulin.
- To understand the importance of T cells, B cells, NK cells, APCs, Cytokines, MHC molecules in immune response.

Learning Outcomes

- explain details of the virulence factors and other features of the pathogen.
- correlate these virulence factors with the pathogenesis and clinical features of the disease.
- comment on the mode of transmission, modes of prophylaxis, and methods of diagnosis of the diseases.
- conceptualize how the adaptive immune responses coordinate to fight invading pathogens.
- explain the role of antigen in initiating the immune response.
- correlate the structure & functions of immunoglobulin.
- recognize the importance of T cells, B cells, NK cells, complement system, cytokines, MHC and APCs.

SBSMCB502	MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-I	2.5 Credits (60 lectures)
Unit-I	Specific infections I: Bacterial strategies for evasion and study of some infectious diseases of the respiratory tract.	15 lectures
	1.1 Study of virulence mechanisms in bacteria	05
	a. Identifying bacteria that cause disease	01
	b. Genomics and bacterial pathogenicity	01
	i. The clonal nature of bacterial pathogens	
	ii. Mobile genetic elements	
	iii. Pathogenicity islands	
	c. Bacterial virulence factors	03
	i. Adherence factors	

		Γ
	ii. Invasion of host cells and tissues	
	iii. Toxins	
	Exotoxins	
	 Exotoxins associated with diarrhoeal diseases 	
	and food poisoning	
	 LPS of gram negative bacteria 	
	iv. Enzymes	
	 Tissue degrading enzymes 	
	- IgA1 proteases	
	v. Antiphagocytic factors	
	vi. Intracellular pathogenicity	
	vii. Antigenic heterogeneity	
	viii. The requirement for iron	
	ix. The role of biofilms	
		10
	1.2 Study of some infectious diseases of the respiratory tract with emphasis on cultural characteristics of the aetiological	10
	agent, pathogenesis, clinical features, laboratory diagnosis	
	and prevention	
	a. S. pyogenes infections	
	b. Diphtheria	
	c. Common cold	
	d. Tuberculosis	
	e. Pneumonia caused by <i>K</i> .pneumoniae	
	e. Theumoma caused by K.pheumomae	
Unit –II	Specific infections II: Study of some skin, gastrointestinal	15
	and urinary tract infections.	lectures
	·	
	2.1 Study of skin infections	05
	a. Leprosy	
	b. Fungal infections- Oral Thrush	
	c. Pyogenic skin infections caused by <i>Pseudomonas</i> and <i>S</i> .	
	aureus.	
	2.2 Study of gastrointestinal tract infections	08
	a. Enteric fever- Salmonella	
	b. Shigellosis	
	c. Rotavirus diarrhoea	
	d. Dysentery due to <i>Entamoeba histolytica</i>	
	e. Infections due to Enteropathogenic <i>E.coli</i> strains	
	c. Infections due to Enteropatriogenie L.con strains	
	2.3 Study of urinary tract infections	02
Unit-III	General Immunology-I	15
		lectures
	3.1Antigens	06

		_
	a. Immunogenicity versus antigenicity	
	b. Factors that influence immunogenicity – foreignness,	
	molecular size, chemical composition, heterogenicity,	
	ability to be processed and presented, contribution of the	
	biological system to immunogenicity – genotype of the	
	recipient, animal, immunogen dosage, route of	
	administration and adjuvants	
	c. Epitopes / antigen determinants (only concepts)	
	d. Haptens and antigenicity	
	e. Immunogenicity of some natural substances – native	
	globular proteins, polysaccharides, lipids, nucleic acids	
	f. Types of antigens: heterophile antigens, isophile	
	antigens, sequestered antigens, super antigens	
	3.2 Immunoglobulins	06
	a. Immunoglobulins – basic and fine structure	
	b. Immunoglobulin classes and biological activities	
	c. Antigenic determinants on immunoglobulins – isotypes,	
	allotypes, idiotypes	
	d. Immunoglobulin Superfamily	
	e. Monoclonal antibodies, Production & applications.	
	3.3 Immune Cells	03
	a. T Cells, B cells and NK Cells: Introduction	
Unit-IV	General Immunology-II	15
		lectures
	4.1 The Complement System	05
	a. The classical, alternate and lectin complement pathways.	
	b. Biological consequences of complement activation.	
	4.2Cytokines	03
	a. Properties and biological functions	
	b. Cytokines secreted by Th1 and Th2 cells	
	c. Cytokine based therapies	
	4.3 MHC complex and MHC molecules	04
	a. Structure of class I, class II and class III molecules	
	b. Differences in the peptide binding cleft of class I and	
	class II MHC molecules.	
	c. Peptide – MHC interaction	
1		
	4.4 Antigen presenting cells	03
	4.4 Antigen presenting cells Antigen presentation, professional and non-professional	03
	a. Antigen presentation- professional and non-professional	03
		03

SBSMCB503 - MICROBIAL BIOCHEMISTRY: PART-I

Learning Objectives

- To understand the architecture of the bacterial membrane and how solute is transported inside the cell using various mechanisms.
- To study the electron transport chains in prokaryotes and understand the mechanism of ATP synthesis.
- To study bioluminescence mechanism and its significance.
- To discuss the various approaches used for studying metabolism.
- To study various pathways of breakdown of carbohydrates and their amphibolic nature.
- To learn various other fermentative pathways for carbohydrate breakdown which produce different end products.
- To study anabolic reactions involved in carbohydrate synthesis.
- To study the concepts of bioenergetics and calculate yield of ATP obtained in various catabolic pathways.

Learning Outcomes

- illustrate the architecture of the membrane and how solute is transported inside the cell.
- describe and explain the electron transport chains in prokaryotes and the mechanism of ATP synthesis.
- explain bioluminescence mechanism and its significance.
- explain the experimental aspect of studying catabolism and anabolism and the various pathways for the breakdown of carbohydrates along with reactions in amphibolic pathways.
- describe various other pathways which produce different end products.
- describe anabolic reactions in carbohydrate synthesis.
- apply the concepts of energetics and catabolism in biodegradation of various substrates.

SBSMCB503	MICROBIAL BIOCHEMISTRY: PART-I	2.5 Credits (60 lectures)
Unit-I	Biological membranes and transport	15 lectures.
	 1.1 Composition and architecture of membrane a. Lipids and properties of phospholipid membranes b. Integral & peripheral proteins & interactions with lipids c. Permeability d. Aquaporins e. Mechanosensitive channels 	02
	1.2 Methods of studying solute transport	02

	a. Use of whole cells	
	b. Liposomes	
	c. Proteoliposomes	
	1.3 Saluta transpart agrees membrane	08
	1.3 Solute transport across membrane	Vo
	a. Passive transport and facilitated diffusion by membrane proteins	
	b. Co-transport across plasma membrane - (Uniport,	
	Antiport, Symport)	
	c. Active transport & electrochemical gradient	
	d. Ion gradient provides energy for secondary active	
	transport -Lactose transport	
	e. Shock sensitive system – Role of binding proteins	
	i. Maltose uptake (Diagram and description)	
	ii. Histidine uptake (Diagram and description)	
	f. Phosphotransferase system	
	g. Schematic representation of various membrane	
	transport systems in bacteria.	
	dansport systems in oacteria.	
	1.4 Other examples of solute transport:	03
	-Iron transport: A special problem	03
	-non transport. A special problem	
Unit –II	Bioenergetics and Bioluminescence	15 lectures
	Diother genes and Diotamineseemee	10 10000105
	2.1 Biochemical mechanism of generating ATP: Substrate-	01
	2.1 Biochemical mechanism of generating ATP: Substrate-Level-Phosphorylation, Oxidative Phosphorylation &	01
	Level-Phosphorylation, Oxidative Phosphorylation &	01
		01
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain	01
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC.	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC.	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins,	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins,	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins,	
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes.	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC a. Organization of electron carriers in bacteria	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC a. Organization of electron carriers in bacteria i. Generalized electron transport pathway in	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC a. Organization of electron carriers in bacteria i. Generalized electron transport pathway in bacteria	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC a. Organization of electron carriers in bacteria i. Generalized electron transport pathway in bacteria ii. Different terminal oxidases	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC a. Organization of electron carriers in bacteria i. Generalized electron transport pathway in bacteria ii. Different terminal oxidases b. Branched bacterial ETC	03
	Level-Phosphorylation, Oxidative Phosphorylation & Photophosphorylation 2.2 Electron transport chain a. Universal Electron acceptors that transfer electrons to ETC. b. Carriers in ETC. i. Hydrogen carriers – Flavoproteins, Quinones ii. Electron carriers – Iron Sulphur proteins, Cytochromes. 2.3 Prokaryotic ETC a. Organization of electron carriers in bacteria i. Generalized electron transport pathway in bacteria ii. Different terminal oxidases b. Branched bacterial ETC c. Pattern of electron flow in E. coli - aerobic and	03

	2.4 ATP synthesis	03
	 a. Explanation of terms – Proton motive force, Proton pump, Coupling sites, P:O ratio, Redox potential (definition of Standard reduction potential) b. Free energy released during electron transfer from NADH to O2 c. Chemiosmotic theory. d. Structure of bacterial ATP synthase e. Inhibitors of ETC and OP 	
	 2.5 Other modes of generation of electrochemical energy a. ATP hydrolysis b. Oxalate formate exchange c. End product efflux, Lactate efflux d. Bacteriorhodopsin: - Definition, function as proton pump and significance 	02
	 2.6 Bioluminescence a. Brief survey of bioluminescent systems b. Biochemistry of light emission c. Scheme/diagram d. Significance / Application 	03
Unit –III	Methods of studying metabolism and catabolism of carbohydrates	15 lectures.
	3.1 Experimental Analysis of metabolism a. Use of radioisotopes i. Pulse labelling ii. Assay and study of radiorespirometry to differentiate EMP & ED b. Use of biochemical mutants c. Sequential induction	03
	3.2 Catabolism of Carbohydrates	10

		1
	vi. Anaplerotic reactions	
	vii. Glyoxylate bypass	
	3.3 Amphibolic role of EMP; Amphibolic role of TCA cycle	01
	3.4 Energetics of Glycolysis, TCA and ED pathway – Balance sheet only. Format (2.5 ATP/NADH and 1.5 ATP / FADH ₂) (Based on this format make balance sheet for Glycolysis -Lactic acid and Alcohol fermentation and for ED pathway)	01
Unit –IV	Fermentative pathways and anabolism of carbohydrates.	15 lectures
	4.1 Fermentative pathways (with structures and enzymes) a. Lactic acid fermentation i. Homofermentation ii. Heterofermentation: Bifidum pathway b. Alcohol fermentation i. By ED pathway in bacteria ii. By EMP in yeasts	04
	 4.2 Other modes of fermentation in microorganisms a. Mixed acid b. Butanediol c. Butyric acid d. Acetone-Butanol e. Propionic acid (Acrylate and succinate propionate pathway) 	05
	 4.3 Anabolism of Carbohydrates General pattern of metabolism leading to synthesis of a cell from glucose a. Sugar nucleotides b. Gluconeogenesis (only bacterial) c. Biosynthesis of glycogen d. Biosynthesis of Peptidoglycan 	06

SBSMCB504- BIOPROCESS TECHNOLOGY: PART I

Learning Objectives

- To learn methods for strain improvement of industrial microorganisms.
- To understand basic functions of fermenter and its parts.
- To understand the basic principles of sterilization, methods of batch and continuous sterilization of media, sterilization of fermenter, feeds and waste.
- To understand the principles of filter sterilization, sterilization of animal cell culture media, sterilization of air and exhaust gas.
- To study monitoring and control of various parameters in a fermentation.
- To understand downstream processing i.e. different methods employed in recovery and purification of industrial products.
- To study treatment of industrial effluent- aerobic breakdown of waste, activated sludge and trickling filter and treatment of sludge.
- To study different types of traditional industrial fermentations.

Learning Outcomes

- describe the methods and techniques used in the improvement of industrially important microorganisms.
- describe the design of fermenters for different applications and its process parameters.
- explain methods of heat and filter sterilization.
- recognize the importance of monitoring and control of parameters during a fermentation and correlate the same with the entire process.
- connect downstream processing with upstream processing and explain the various processes used in the recovery and purification of industrial products.
- describe aerobic breakdown of industrial effluent and treatment of sludge.
- summarize various traditional industrial fermentations.

SBSMCB504	BIOPROCESS TECHNOLOGY: PART I	2.5 Credits (60 lectures)
Unit-I	Strain improvement of industrial microorganisms	15 lectures
	 1.1 Selection of induced mutants synthesizing improved levels of primary metabolites a. Feedback inhibition and feedback repression b. Concerted feedback control, co-operative feedback control, cumulative feedback control, sequential feedback control, isoenzyme control c. Selection of mutants with altered permeability d. Isolation of mutants which do not produce feedback inhibitors or repressors Examples of the use of auxotrophs for production of primary metabolites. 	09

	e. Isolation of mutants that do not recognize the	
	presence of inhibitors & repressors	
	Isolation of analogue resistant mutants	
	Gradient plate technique	
	Isolation of revertants	
	1.2 Isolation of induced mutants producing improved	04
	yields of secondary metabolites	
	a. Davies technique and miniaturized techniques	
	b. Isolation of auxotrophic mutants	
	c. Isolation of resistant mutants.	
	d. Isolation of revertant mutants.	
	1.3 The use of recombination systems for the	02
	improvement of industrial microorganisms	
	a. Parasexual cycle	
	b. Protoplast fusion techniques	
	1	
Unit-II	Upstream processing-Fermentation equipment,	15 lectures
	Sterilization, Monitoring and control.	
	2.1.Design of fermenter	06
	a. Basic functions of a fermenter	
	b. Aseptic operation and Containment	
	c. Fermenter Body construction -Laboratory, Pilot-	
	scale and Industrial fermenter	
	d. Aeration and agitation: Agitators, Stirrer glands	
	& bearings, Baffles, Sparger	
	e. Sampling	
	f. Valves	
	g. Steam traps	
	h. Types of fermenters	
	, J 1	
	i. Air-lift fermenters	
	i. Air-lift fermenters	
	i. Air-lift fermentersii. Bubble-cap fermenter	
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 	
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction 	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction b. Monitoring and control of 	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction b. Monitoring and control of i. Temperature 	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction b. Monitoring and control of i. Temperature ii. Flow rate of liquids and gases 	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction b. Monitoring and control of i. Temperature ii. Flow rate of liquids and gases iii. Pressure 	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction b. Monitoring and control of i. Temperature ii. Flow rate of liquids and gases iii. Pressure iv. Foam 	03
	 i. Air-lift fermenters ii. Bubble-cap fermenter iii. Cylindro-conical vessels i. Scale-up 2.2 Instrumentation & Control of various parameters a. Introduction b. Monitoring and control of i. Temperature ii. Flow rate of liquids and gases iii. Pressure 	03

	vii. pH	
	2.3 Sterilization	06
	a. Introduction.	
	b. Media sterilization	
	i. Design of batch sterilization processes-	
	concept of Del factor	
	ii. Methods of batch sterilization	
	iii. Design of continuous sterilization	
	processes	
	iv. Spiral heat exchangers and steam injector	
	c. Sterilization of the fermenter	
	d. Sterilization of the feeds	
	e. Sterilization of the liquid wastes	
	f. Filter sterilization- Fixed-pore and non-fixed	
	pore filters	
	g. Filter sterilization of fermentation media	
	h. Filter sterilization of air	
	i. Sterilization of fermenter exhaust air	
Unit III	Downstream processing -Recovery and Effluent	15 lectures
	treatment	
	3.1. Recovery& Purification of fermentation products	12
	a. Introduction	
	b. Precipitation	
	c. Filtration	
	i. Filter-aids	
	ii. Batch filters- Plate and frame filters	
	iii. Continuous filters -Rotary vacuum filter	
	d. Centrifugation	
	 Cell aggregation and flocculation 	
	ii. Range of centrifuges – Basket and tubular	
	bowl.	
	00,11	
	e. Cell disruption	
	e. Cell disruption	
	e. Cell disruption i. Physical mechanical methods- Liquid	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing,	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing, Ultrasonication.	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing, Ultrasonication. ii. Chemical- Detergents, Osmotic shock,	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing, Ultrasonication. ii. Chemical- Detergents, Osmotic shock, Alkali, Enzyme treatment	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing, Ultrasonication. ii. Chemical- Detergents, Osmotic shock, Alkali, Enzyme treatment f. Liquid – Liquid extraction	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing, Ultrasonication. ii. Chemical- Detergents, Osmotic shock, Alkali, Enzyme treatment f. Liquid – Liquid extraction i. Significance of K value	
	e. Cell disruption i. Physical mechanical methods- Liquid shear, Solid shear, Agitation with abrasives, freezing-thawing, Ultrasonication. ii. Chemical- Detergents, Osmotic shock, Alkali, Enzyme treatment f. Liquid – Liquid extraction i. Significance of K value ii. Co-current extraction system	

	g. Solvent recovery i. Batch distillation ii. Continuous distillation h. Chromatography i. Adsorption chromatography (briefly) ii. Ion exchange chromatography iii. HPLC (briefly) i. Membrane processes i. Ultrafiltration ii. Reverse osmosis j. Drying i. Drum driers ii. Spray driers iii. Freeze drying k. Crystallization l. Whole broth processing. 3.2 .Effluent treatment (Students to revise the following topics from S.Y.B.Sc Measurement of Dissolved Oxygen by Winkler method, BOD, COD, Total Organic Carbon and Total Suspended Solids) a. Aerobic breakdown of raw waste water i. Activated sludge ii. Modifications of Activated sludge - Tapered aeration, Step aeration, Contact stabilization, Pasveer ditch, Deep shaft process, Enclosed tank systems iii. Trickling filter iv. Rotating disc contactors	03
Unit IV	Traditional industrial fermentations : Part-I	15 lootuwos
Unit IV	1 radiuonai industriai iermentations : Part-1	15 lectures
	4.1. Beer –Ale and Lager 4.2. Wine –Red and white & Champagne 4.3. Vinegar (Acetator & generator) 4.4. Alcohol from molasses 4.5. Baker's yeast	
	4.6. Fungal amylase by solid substrate fermentation	

Semester V PRACTICALS SBSMCBP5

Sr. no.	SECTION-1 MICROBIAL GENETICS
1	Student activity- Construct a model from a simple material to explain any concept
	or molecular mechanism of DNA replication OR Assignment on "Scientists who
	discovered facts / mechanisms / proteins and enzymes of DNA replication."
2	UV survival curve- determination of exposure time leading to 90% reduction.
3	Isolation of mutants using UV mutagenesis.
4	Replica plate technique for selection and characterization of mutants- auxotroph and
	resistant.
5	Isolation and detection of plasmid DNA by Agarose gel electrophoresis.

Sr. no.	SECTION-2 MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-I
1	Acid fast staining of <i>Mycobacterium species</i> .
2	Study of standard cultures- Escherichia coli, Klebsiella pneumoniae, Proteus spp.,
	Pseudomonas aeruginosa, Salmonella typhi, Salmonella paratyphi A, Salmonella
	paratyphi B, Shigella spp., Streptococcus pyogenes, Staphylococcus aureus,
	Corynebacterium diphtheriae.
3	Diagnosis of Respiratory tract infections.
4	Diagnosis of skin infections.
5	Diagnosis of Gastrointestinal tract infections.
6	Diagnosis of Urinary tract infections.
7	Identification of <i>Candida</i> species using germ tube test and growth on Chrom agar.
8	Visit to a pathology laboratory.

Sr. no.	SECTION-3 MICROBIAL BIOCHEMISTRY: PART-I
1	Isolation and detection of siderophore producing bacteria.
2	Isolation and study of bioluminescent organisms.
3	Study of oxidative and fermentative metabolism.
4	Study of Homo-Hetero lactic acid fermentation.
5	Qualitative and Quantitative assay of phosphatase.
6	Glucose detection by GOD/POD.

Sr. no	SECTION-4 BIOPROCESS TECHNOLOGY: PART I
1	Agar strip technique.
2	Agar streak technique.
3	Gradient plate technique.
4	Student activity- Students will learn to autoclave media for their practicals and will
	also do filter sterilization of heat labile media.
5	Alcohol fermentation
	a. Preparation and standardization of yeast inoculum for alcohol fermentation.
	b. Laboratory Alcohol fermentation using jaggery medium, calculation of efficiency
	of fermentation.

6	Determination of alcohol tolerance for yeast.
7	Determination of sugar tolerance for yeast.
8	Chemical estimation of sugar by Cole's ferricyanide method.
9	Chemical estimation of alcohol.
10	Production of amylase and its detection, shake flask or solid substrate cultivation and
	estimation (Qualitative).

REFERENCES: SEMESTER V

SBSMCB501

- 1. Russell, Peter J. 2010. iGenetics: A Molecular Approach, 3rd edition. Pearson.
- 2. Weaver, Robert F. 2012. Molecular Biology, 5th edition. McGraw-Hill.
- 3. Pierce, B. 2008. Genetics- a conceptual approach, 3rd edition, W.H. Freeman and company.
- 4. Nelson, David L., Cox, Michael M. 2012. Lehninger Principles of Biochemistry, 6th edition. W.H. Freeman
- 5. Stanier, Roger Y., Adelberg, Edward A., and Ingraham, John L. 1976. General Microbiology, 4th edition. Macmillan.
- 6. Stanier, Roger Y., Ingraham, John L., Wheelis, Mark L., and Painter, Page R. 1992. General Microbiology, 5th edition. Macmillan Press ltd.
- 7. Tamarin, Robert H. 2002. Principles of Genetics, 7th edition. McGraw-Hill.
- 8. Madigan T., Michael J. M., Martinko K. S., Bender D. H., Buckley, and Stahl D.A. 2006 Brock Biology of Microorganisms 11th edition, Boston, Pearson Prentice Hall.
- 9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135910/ ds DNA uptake by E.coli.
- 10. https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&c md=prlinks&id=22683880.

- 1. Willey, J.M., Sherwood, L.M., and Woolverton, C.J. 2008. Prescott, Harley and Klein's Microbiology, 7th edition. New York, McGraw Hill International Edition.
- 2. Ananthanarayan and Paniker, 2009, Textbook of Microbiology", 8th edition. Universal Press.
- 3. Mims, C, "Medical Microbiology", 3rd edition Mosby.
- 4. Konemann, "Diagnostic Microbiology", 5th edition. Lippincott.
- 5. Konemann, "Diagnostic Microbiology", 6th edition. Lippincott.
- 6. Shors, Teri. 2009. Understanding viruses. Jones and Bartlett Publishers.
- 7. Richard A. Goldsby, Janis Kuby, "Immunology", 6th edition. H. Freeman and company.
- 8. Richard A. Goldsby, Janis Kuby, "Immunology", 7th edition. H. Freeman and company.
- 9. Fahim Halim Khan, "The elements of Immunology". Pearson Education.
- 10. Pathak, S., Palan U, "Immunology Essential and Fundamental", 2nd edition. Capital publishing company. (3rd edition Ref.)
- 11. Ian R. Tizard, "Immunology, An Introduction", 4th edition, Saunders college publishing.

SBSMCB503

- 1. Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd.
- 2. Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley &Sons. New York.
- 3. Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag.
- 4. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press.
- 5. Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry. 4th edition, W. H. Freeman and Company.
- 6. Rose, A.H. (1976) Chemical Microbiology, 3rd edition. Butterworth-Heinemann.
- 7. Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers.
- 8. Mathews, C.K., K.E. van Holde, D.R. Appling, S, J, Anthony-Cahill (2012) Biochemistry, 4th edition. Pearson.
- 9. Wilson and Walker, 4th edition Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University press.
- 10. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown publishers.
- 11. Cohen, G.N. (2011). Microbial Biochemistry. 2nd edition, Springer.

- 1. Stanbury P. F., Whitaker A. and Hall S. J. 1997 Principles of Fermentation Technology 2nd edition, New Delhi, Aditya Books Pvt. Ltd.
- 2. Casida L. E. 2016 Industrial Microbiology, Reprint, New Delhi, New Age International (P) Ltd. Publishers.
- 3. Okafor N, 2007, Modern Industrial Microbiology and Biotechnology, Science publishers.
- 4. Prescott and Dunn.1982.Industrial Microbiology, 4th edition, London, Macmillan Publishers.
- 5. Crueger W. and Crueger A. 2000 "Biotechnology -"A Textbook of Industrial Microbiology", 2nd edition, Panima Publishing Corporation, New Delhi.

	SEMESTER VI	
PAPER CODE	PAPER TITLE	CREDITS
SBSMCB601	rDNA TECHNOLOGY, BIOINFORMATICS AND	2.5 Credits
	VIROLOGY	(60 lectures)
Unit I	Recombinant DNA technology	15 lectures
Unit II	Basic Techniques & Bioinformatics	15 lectures
Unit III	Virology I	15 lectures
Unit IV	Virology II	15 lectures
SBSMCB602	MEDICAL MICROBIOLOGY AND	2.5 Credits
	IMMUNOLOGY: PART-II	(60 lectures)
Unit I	Specific infections III	15 lectures
Unit II	Chemotherapy of infectious agents	15 lectures
Unit III	General Immunology- II	15 lectures
Unit IV	Vaccines, Immunohaematology, Antigen-Antibody	15 lectures
	reactions	
SBSMCB603	MICROBIAL BIOCHEMISTRY: PART-II	2.5 Credits
		(60 lectures)
Unit I	Lipid metabolism and Catabolism of Hydrocarbons	15 lectures
Unit II	Metabolism of proteins and nucleic acids	15 lectures
Unit III	Metabolic Regulation	15 lectures
Unit IV	Prokaryotic Photosynthesis and Inorganic metabolism	15 lectures
SBSMCB604	BIOPROCESS TECHNOLOGY: PART II	2.5 Credits
		(60 lectures)
Unit I	Traditional industrial fermentations : Part-II	15 lectures
Unit II	Quality assurance, Sterility assurance and Microbiological assays	15 lectures
Unit III	Advances in Bioprocesses technology	15 lectures
Unit IV	Biotechnological Products	15 lectures
SBSMCBP6	PRACTICALS	06 Credits
PRACTICAL-I	SECTION 1 rDNA TECHNOLOGY,	1.5 credits
	BIOINFORMATICS AND VIROLOGY	
PRACTICAL-II	SECTION-2 MEDICAL MICROBIOLOGY AND	1.5 credits
	IMMUNOLOGY: PART-II	
PRACTICAL-	SECTION 3 MICROBIAL BIOCHEMISTRY: PART-II	1.5 credits
III		
PRACTICAL-	SECTION-4 BIOPROCESS TECHNOLOGY: PART II	1.5 credits
IV		

Semester VI

SBSMCB601- rDNA TECHNOLOGY, BIOINFORMATICS AND VIROLOGY

Learning Objectives

- To understand the tools and techniques used for gene cloning and genetic engineering.
- To gain knowledge on the applications of rDNA technology.
- To understand the basics of bioinformatics, its importance and how biological data is stored.
- To understand structure of viruses, classification and their replication cycle.
- To understand life cycle and gene regulation of bacteriophages.
- To understand life cycle of human viruses such as Influenza virus and Human Immunodeficiency virus.
- To learn methods for cultivation of viruses and measurement of infectious viruses.
- To understand the role of viruses in cancer.

Learning Outcomes

- explain the methods to construct recombinant DNA molecules and describe vectors and restriction enzymes.
- identify the role of PCR and nucleic acid hybridization in rDNA technology.
- connect the methods of rDNA technology with its applications.
- explain how biological data is stored and retrieved and apply the principles to do online practicals.
- explain replication strategies of different viruses and correlate the same with Baltimore classification scheme.
- describe life cycle of T4 bacteriophage and human viruses such as Influenza and HIV.
- explain the regulation of gene expression in bacteriophages.
- describe the different methods of cultivation and measurement of infectious viruses.
- define the terms related to cancer and recognize the relationship between viruses and cancer.

SBSMCB601	rDNA TECHNOLOGY, BIOINFORMATICS AND	2.5 Credits
	VIROLOGY	(60 lectures)
Unit-I	Recombinant DNA technology	15 lectures
	1.1. Basic steps in Gene Cloning	01
	1.2. Cutting and joining of DNA moleculesa. Restriction and modification systemsb. Restriction endonucleasesc. DNA ligases	03

	1.3. Vectors	04
	a. Plasmids pBR322, cloning genes into pBR322	04
	b. Phage as cloning vectors, cloning genes into phage	
	vector	
	c. Cosmids	
	d. Shuttle vectors	
	e. BACs and YACs	
	C. Bires and Tires	
	1.4. Methods of artificial transformation and transfection	02
	a. CaCl ₂ method	
	b. Electroporation	
	c. Lipofection	
	d. Particle bombardment	
	e. Ti plasmid	
	f. Microinjection	
	1.5. Applications of recombinant DNA technology	05
	a. Site specific mutagenesis of DNA	
	b. DNA molecular testing for human genetic diseases	
	c. Forensic investigation - DNA typing	
	d. Gene therapy	
	e. Biotechnology- genetic engineering of plants and	
	animals	
Unit-II	Basic Techniques & Bioinformatics	15 lectures
	2.1 Pagia taghniques	02
	2.1. Basic techniques	02
	a. Southern, Northern and Western blotting.	02
		02
	a. Southern, Northern and Western blotting.b. Autoradiography	
	a. Southern, Northern and Western blotting.b. Autoradiography2.2. Screening and selection methods for identification and	02
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations d. Identifying specific DNA sequences in libraries using heterologous probes and using oligonucleotide probes 	03
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations d. Identifying specific DNA sequences in libraries using heterologous probes and using oligonucleotide probes 2.3. PCR 	
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations d. Identifying specific DNA sequences in libraries using heterologous probes and using oligonucleotide probes 2.3. PCR a. Basic PCR 	03
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations d. Identifying specific DNA sequences in libraries using heterologous probes and using oligonucleotide probes 2.3. PCR a. Basic PCR b. Different types of PCR (Reverse transcriptase PCR, 	03
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations d. Identifying specific DNA sequences in libraries using heterologous probes and using oligonucleotide probes 2.3. PCR a. Basic PCR 	03
	 a. Southern, Northern and Western blotting. b. Autoradiography 2.2. Screening and selection methods for identification and isolation of recombinant cells a. Screening a cDNA library b. Screening a bacteriophage λ library for a specific gene clone c. Identifying genes in libraries by complementation of mutations d. Identifying specific DNA sequences in libraries using heterologous probes and using oligonucleotide probes 2.3. PCR a. Basic PCR b. Different types of PCR (Reverse transcriptase PCR, 	03

	i. Definition, aims, tasks and applications of	
	Bioinformatics.	
	ii. Database, tools and their uses -Importance,	
	Types and classification of databases	
	Nucleic acid sequence databases- EMBL,	
	=	
	DDBJ, GenBank, GSDB, Ensembl and	
	specialized Genomic resources.	
	Protein sequence databases-PIR, SWISS-PROT,	
	TrEMBL NRL-3D.	
	Protein structure databases-SCOP, CATH,	
	PROSITE, PRINTS and BLOCKS. KEGG.	
	b. Brief introduction to Transcriptome, Metabolomics,	
	•	
	Pharmacogenomics, Annotation	
	c. Sequence alignment global v/s local alignment,	
	FASTA, BLAST, Phylogenetic tree	
	d. Genomics- structural, functional and comparative	
	genomics.	
	e. Proteomics- structural and functional proteomics	
	c. Trotoomies structural and reneutonal proteomies	
Unit III	Virology I- Structure, classification, life cycle of viruses	15 lectures
Omt m	, ,	15 lectures
	and bacteriophages	
	3.1. Viral architecture	02
	a. Capsid - Helical and icosahedral, viral genome and	
	envelope	
	b. Complex viruses	
	c. Giruses	
	c. Ghuses	
	3.2. Viral Classification	01
		U1
	a. Baltimore classification scheme	
	b. International Committee on Taxonomy of Viruses	
	3.3. The viral replication cycle	07
	a. Attachment	
	b. Penetration	
	c. Uncoating	
	d. Types of viral genome and their replication	
	i. dsDNA	
	ii. ssDNA	
	11. 551/1/1/1	
	iii ga/daDNA yaing an DNA intermediata	
	iii. ss/dsDNA using an RNA intermediate	
	iv. dsRNA	
	iv. dsRNA v. positive ssRNA	
	iv. dsRNA	
	iv. dsRNA v. positive ssRNA vi. negative ssRNA	
	iv. dsRNA v. positive ssRNA vi. negative ssRNA vii. positive ssRNA using dsDNA as an	
	iv. dsRNA v. positive ssRNA vi. negative ssRNA vii. positive ssRNA using dsDNA as an intermediate	
	iv. dsRNA v. positive ssRNA vi. negative ssRNA vii. positive ssRNA using dsDNA as an	

	g. Release	
	g. Teolouse	
	3.4. Bacteriophages	05
	a. Life cycle of T4- Adsorption and Penetration, Synthesis	
	of phage nucleic acids and proteins – Virus gene	
	expression and terminal redundancy, Assembly and	
	release of phage particles.	
	b. Regulation of gene expression in lambda phage- Early	
	transcription events, lysogenic pathway, lytic pathway	
Unit IV	Virology II	15 lectures
	4.1 Human viruses	05
	a. Influenza- Structure and Life cycle in detail	03
	b. HIV- Structure and Life cycle in detail	
	4.2 Cultivation of viruses	02
	a. Cell lines, embryonated eggs and laboratory animals	
	b. Cytopathic effects	
		02
	4.3. Visualization and enumeration of virus particles	03
	4.3.a. Measurement of infectious units i. Plaque assay	
	ii. Fluorescent focus assay	
	iii. Infectious center assay	
	iv. Transformation assay	
	v. Endpoint dilution assay.	
	4.3.b. Measurement of virus particles and their components	02
	i. Electron microscopy, Comparison of Atomic	
	force microscopy and electron microscopy	
	ii. Haemagglutination assay	
	iii. Measurement of viral enzyme activity	
	4.4. Viruses in cancer	03
	a. Definitions- Cancer, oncogene, proto-oncogene, tumor	
	suppressor gene	
	b. RNA tumor viruses – Mechanism of oncogenesis	
	c. DNA tumor viruses-	
	i. Epstein Barr virus	
	ii. Hepatitis B virus iii. Hepatitis C virus	
	iii. Hepatitis C virusiv. Kaposi's sarcoma virus	
	v. Human papilloma virus	
	r or	

SBSMCB602 - MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-II

Learning Objectives

- To learn the mode of transmission, epidemiology and modes of prophylaxis of the diseases.
- To understand how to identify the likely causative agent of a disease using a few key clinical features.
- To study the detailed method of diagnosis of a disease.
- To understand the mode of action of different chemotherapeutic agents and methods of selection and testing of antibiotics.
- To understand the effector responses- Humoral Immunity & Cell Mediated Immunity.
- To understand the mechanism of Antigen-Antibody interaction & its significance in diagnosis of a disease.
- To apply the concept of immunity in prevention of diseases by development of vaccines.

Learning Outcomes:

- explain pathogenesis, laboratory diagnosis and prevention of sexually transmitted diseases and central nervous system infections.
- explain mode of action of different chemotherapeutic agents and apply the knowledge in selecting the antibiotics against pathogens.
- explain the structure and role of T and B cells in generating adaptive immunity and thereby study effector responses in both Humoral & Cell Mediated Immunity.
- differentiate between Humoral & Cell Mediated Immunity.
- acquire an understanding of the role of immune system in disease.
- apply the concept of immunity to prevention of disease by development of vaccines.
- explain the principle of ELISA, Western blotting, RIA and Immunofluorescence and apply these techniques and assays in diagnosis of diseases.

SBSMCB602	MEDICAL MICROBIOLOGY AND IMMUNOLOGY:	2.5 Credits
	PART-II	(60 lectures)
Unit I	Specific infections III: Study of some diseases with	15 lectures
	emphasis on cultural characteristics of the aetiological	
	agent, pathogenesis, laboratory diagnosis and prevention	
	1.1 Study of vector-borne infection: Malaria	02
	1.2 Study of sexually transmitted infectious diseases	08
	a. Syphilis	
	b. AIDS	
	c. Gonorrhoea	
	1.3 Study of central nervous system infectious diseases	05
	a. Tetanus	
	b. Polio	

	c. Meningococcal meningitis	
Unit II	Chemotherapy of infectious agents	15 lectures
	2.1 Attributes of an ideal chemotherapeutic agent and related definitions2.2 Selection and testing of antibiotics for bacterial isolates by Kirby Bauer method	02
	 2.3 Mode of action of antibiotics on- a. Cell wall (Beta-lactams- Penicillin and Cephalosporins, Carbapenems) b. Cell Membrane (Polymyxin and Imidazole) c. Protein Synthesis (Streptomycin, Tetracycline and Chloramphenicol) d. Nucleic acid (Quinolones, Nalidixic acid, Rifamycin) e. Enzyme inhibitors (Sulfa drugs, Trimethoprim) 	09
	 2.4 List of common antibiotics used for treating viral, fungal and parasitic diseases. 2.5 New antibiotics 2.6 Machanisms of drug resistance. Its evalution, nothways 	01
	2.6 Mechanisms of drug resistance- Its evolution, pathways and origin	03
Unit III	General Immunology- II	15 lectures
	3.1 T cells	03
	 a. Receptors and their structure (alpha-beta, gamma-delta TcR) b. TcR-CD3 complex: structure & functions. Accessory molecules. c. Subsets of T cells (Th1, Th2, T reg) d. T cell activation, Costimulatory molecules, T cell differentiation (memory & effector cell) 	
	3.2 B cells	03
	 a. Receptors: structure & organization b. B cell activation and differentiation i) B cell activating signals ii) Role of Th cells in B cell response, formation of T – B conjugates, CD40 / CD40L interaction, Th cell cytokine signals. 	

	3.3 Humoral Response	05
	a. Induction of Humoral response, Primary and secondary responses	
	b. Germinal centers and antigen induced B cell differentiation	
	c. Affinity maturation and somatic hyper mutation, Ig diversity, class switching	
	d. Generation of plasma cells and memory cells	
	3.4 Cell mediated effector response	04
	a. Generation and target destruction by Cytotoxic T cells.b. Killing mechanism of NK cells.c. Antibody dependent cell cytotoxicity (ADCC)	
Unit IV	Vaccines, Immunohaematology, Antigen-Antibody reactions	15 lectures
	4.1Vaccines	07
	a. Active and passive immunization	0,
	b. Types of vaccines - Killed and attenuated vaccines,	
	Whole organism vaccines, Purified macromolecules as	
	vaccines, recombinant viral and bacterial vector	
	vaccines, DNA vaccines.	
	c. New vaccine strategies	
	d. Use of adjuvants in vaccine	
	e. Characteristics of an ideal vaccine	
	f. Route of vaccine administration, Vaccination schedule and Failures in vaccination	
	4.2 Immunohaematology	03
	a. Human blood group systems, ABO and Rh blood	
	groups, Haemolytic disease of new born, Coombs test.	
	b. Potential transfusion hazards and transfusion alternatives.	
	4.3 Antigen-Antibody reactions	05
		i a
	a. Precipitation reaction	
	a. Precipitation reactionb. Agglutination, passive agglutination, agglutination inhibition reaction	
	b. Agglutination, passive agglutination, agglutination	
	b. Agglutination, passive agglutination, agglutination inhibition reaction	
	b. Agglutination, passive agglutination, agglutination inhibition reactionc. Radioimmunoassays	

SBSMCB603- MICROBIAL BIOCHEMISTRY: PART-II

Learning Objectives:

- To understand metabolism of lipids, fatty acids, nucleotides and amino acids.
- To understand catabolism of protein and aliphatic hydrocarbons.
- To study regulation of metabolic process at various levels.
- To study prokaryotic photosynthesis and photophosphorylation.
- To discuss metabolism of inorganic molecules with special reference to nitrate and sulfate.
- To understand the mechanism of biological nitrogen fixation.
- To study lithotrophy.

Learning Outcomes:

At the end of the course, learner will be able to explain the following metabolic process and their significance:

- Metabolism of lipids, fatty acids, nucleotides and amino acids.
- Catabolism of protein and aliphatic hydrocarbons.
- Regulation of metabolic process at various levels.
- Photosynthesis.
- Metabolism of inorganic molecules with special reference to nitrate and sulphate.
- Biological nitrogen fixation.
- Lithotrophy.

SBSMCB603	MICROBIAL BIOCHEMISTRY: PART-II	2.5 Credits (60
		lectures)
Unit I	Lipid metabolism and Catabolism of Hydrocarbons	15 lectures
	 1.1 Introduction to Lipids a. Lipids –Definition, classification & functions b. Types and role of fatty acids found in bacteria c. Common phosphoglycerides in bacteria d. Action of lipases on triglycerides /tripalmitate 	02
	 1.2 Catabolism of Fatty Acids and PHB a. Oxidation of saturated fatty acid by β oxidation pathway b. Energetics of β oxidation of Palmitic acid c. Oxidation of propionyl CoA by acrylyl- CoA pathway and methyl citrate pathway d. PHB as a food reserve and its degradation 	05
	 1.3 Anabolism of Fatty Acids & Lipids a. Biosynthesis of straight chain even carbon saturated fatty acid (palmitic acid) b. Biosynthesis of phosphoglycerides in bacteria c. Biosynthesis of PHB 	06
	 1.4 Catabolism of aliphatic hydrocarbons a. Organisms degrading aliphatic hydrocarbons b. Hydrocarbon uptake mechanisms c. Omega oxidation pathway- i. Pathway in Corynebacterium and yeast ii. Pathway in Pseudomonas 	02
Unit II	Metabolism of proteins and nucleic acids	15 lectures
	2.1 Protein / amino acid catabolism a. Enzymatic degradation of proteins b. General reactions of amino acids catalyzed by i. Amino acid decarboxylases ii. Amino acid deaminases iii. Amino acid transaminases iv. Amino acid racemases c. Metabolic fate of amino acids - Glucogenic and ketogenic amino acids d. Fermentation of single amino acid - Glutamic acid by Clostridium tetanomorphum e. Fermentation of pair of amino acids - Stickland reaction (include enzymes)	06

	 2.2 Anabolism of amino acids a. Schematic representation of amino acid families b. Biosynthesis of amino acids of Serine family (Serine, Glycine and Cysteine) 	02
	 2.3 Catabolism of Nucleotides a. Degradation of purine nucleotides up to uric acid formation b. Salvage pathway for purine and pyrimidine nucleotides 	03
	 2.4 Biosynthesis of nucleotides a. Nomenclature and structure of nucleotides b. Role of nucleotides (high energy triphosphates) c. Biosynthesis of pyrimidine nucleotides d. Biosynthesis of purine nucleotides e. Biosynthesis of deoxyribonucleotides 	04
Unit III	Metabolic Regulation	15 lectures
	3.1 Definition of terms and major modes of regulation	02
	 3.2 Regulation of enzyme activity a. Noncovalent enzyme inhibition i. Allosteric enzymes and feedback inhibition ii. Patterns of FBI, combined activation and inhibition b. Covalent modification of enzymes i. Monocyclic cascades ii. Examples of covalent modification (without structures) iii. Regulation of Glutamine synthetase 	05
	 3.3 DNA binding proteins and regulation of transcription by positive & negative control a. DNA binding proteins b. Negative control of transcription: Repression and Induction c. Positive control of transcription: Maltose catabolism in E. coli 	04
	3.4 Global regulatory mechanismsa. Global control & catabolite repressionb. Stringent response	02
	3.5 Regulation of EMP and TCA cycle - (Schematic and Regulation of Pryruvate dehydrogenase Complex)	02

Unit IV	Prokaryotic Photosynthesis and Inorganic metabolism	15 lectures
	4.1 Photosynthesis	04
	a. Definition of terms in photosynthesis (light and dark	
	reactions, Hill reaction & reagent, Photophosphorylation)	
	b. Photosynthetic pigments	
	c. Location of photochemical apparatus	
	d. Photochemical generation of reductant	
	d. Photochemical generation of reductant	
	4.2 Light reactions in:	03
	a. Purple photosynthetic bacteria	
	b. Green sulphur bacteria	
	c. Cyanobacteria (with details)	
	4.3 Dark reaction	02
	a. Calvin Benson cycle	
	b. Reductive TCA cycle	
	4.4 Inorganic Metabolism	05
	a. Assimilatory pathways:	
	i. Assimilation of nitrate,	
	ii. Ammonia fixation – Glutamate dehydrogenase,	
	Glutamine synthetase, GS-GOGAT, Carbamoyl	
	phosphate synthetase	
	iii. Biological nitrogen fixation (Mechanism for N ₂	
	fixation and protection of nitrogenase)	
	iv. Assimilation of sulphate	
	b. Dissimilatory pathways:	
	i. Nitrate as an electron acceptor (Denitrification in	
	Paracoccus denitrificans)	
	ii. Sulphate as an electron acceptor	
	4.5 Lithotrophy —Enlist organisms and products formed during	01
	oxidation of hydrogen, carbon monoxide, ammonia, nitrite,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	sulphur and iron	
	Surprior and non]

SBSMCB604 - BIOPROCESS TECHNOLOGY: PART II

Learning Objectives

- To study basic industrial fermentations.
- To understand the principles of quality assurance, quality control, GMP and sterility assurance in pharmaceutical industry.
- To study methods for cultivation of animal cell lines and design of animal cell culture fermenters.
- To learn manufacture of vaccines and their quality control.
- To understand the methods for immobilization of enzymes and their applications.
- To learn the design of biosensors and their applications.
- To study production of bacterial biotechnological products such as biofertilizer, bioinsecticide and biopolymers.
- To study algal biotechnological products such as biofuels, biodiesel and other products.
- To study production of yeasts for important products.

Learning Outcomes

- summarize basic traditional industrial fermentations.
- explain the basic principles of quality assurance, quality control, GMP and sterility assurance in pharmaceutical industry.
- describe the different types of microbiological assays and apply the same in assaying the concentration of important compounds.
- explain the establishment of animal cell lines, describe the design of animal cell culture fermenters and compare the same with fermenters used for bacterial fermentations.
- describe the entire vaccine manufacturing process and the quality control of the same.
- explain the different methods of immobilization of enzymes and summarize the applications of the same.
- describe the basic design and types of biosensors and recognize their applications in industry.
- explain the industrial production of bioinsecticides, biofertilizers and biopolymers such as xanthan gum, PHA, alginate.
- describe the design of photobioreactors for cultivation of algae and recognize the importance of valuable industrial algal products such as biodiesel and other biofuels.
- develop interest in algal biotechnology research and products like biodiesel.
- recognize the importance of yeast products such as carotenoid and lipids and develop interest in research.

SBSMCB604	BIOPROCESS TECHNOLOGY: PART II	2.5 Credits (60 lectures)
Unit I	Traditional industrial fermentations : Part-II	15 lectures
	1.1. Penicillin & Semisynthetic Penicillin 1.2. Vitamin B ₁₂ from <i>Propionibacterium & Pseudomonas</i> 1.3. Glutamic Acid (direct) 1.4. Citric acid 1.5 Mushroom	Te rectures
Unit II	Quality assurance, Sterility assurance and Microbiological assays	15 lectures
	 2.1 QA,QC,GMP: a. Definitions- Manufacture, Quality, Quality Control, In-Process Control, Quality Assurance, Good Manufacturing Practices. b. Chemicals & Pharmaceutical production. c. The five variables, - Raw materials, In process items, Finished products, Labels and labelling, Packaging materials. d. Documentation e. Regulations f. Control of Microbial contamination during manufacture g. Manufacture of sterile products h. Clean and Aseptic Area 	07
	 2.2 Microbiological assays a. Definition b. Advantages c. Bioassay of Antibiotics- Agar diffusion assay (cylinder plate method), turbidimetric assay d. Bioassay of vitamins- Agar diffusion assay (cylinder plate method), turbidimetric assay, titrimetric assay e. End-point dilution assays f. Metabolic response assays g. Enzymatic assays 	03
	 2.3 Sterilization, Control and Sterility Assurance a. Bio-burden determinations b. Environmental monitoring c. Sterilization Monitors – Physical, Chemical and Biological indicators d. Sterility Testing. 	05

Unit III	Advances in Bioprocess technology	15 lectures
	 3.1 Animal Cell Cultivation and applications a. Animal Cell Lines b. Methods of cultivation and establishment of cell lines c. Animal cell culture fermenters and Large scale cultivation procedures d. Applications 	04
	3.2. Manufacture and Quality control of Vaccines	04
	 3.3 Enzyme Technology a. Introduction b. Enzyme Immobilization methods c. Applications in therapeutic, Analytical, and Industrial uses 	05
	3.4 Biosensorsa. Design and workingb. Typesc. Applications in Biotechnology	02
Unit IV	Biotechnological Products	15 lectures
	 4.1 Bacterial Biotechnology a. Bioinsecticides b. Bacterial Biofertilizer- Production of bacterial biofertilizer, Rhizobium, Phosphate solubilizing bacteria. c. Biopolymers- Microbial production of Xanthan gum, Melanin, Alginate, PHAs and PHBs 	08
	 4.2 Algal Biotechnology a. Photobioreactors b. Important products produced by Algae i. Biofuels, Bio-Oil, Biohydrogen, Biomethane, Bioethanol, Biobutanol, Biodiesel 	04
	ii. Pigments and other important compounds	

Semester VI PRACTICALS SBSMCBP6

Sr. no.	SECTION-1 rDNA TECHNOLOGY, BIOINFORMATICS AND VIROLOGY
1	Isolation of genomic DNA of <i>E.coli</i> and measurement of its concentration by UV-
	visible spectrophotometer.
2	Restriction digestion of lambda phage/ any plasmid DNA.
3	Bioinformatics practicals
	i. Visiting NCBI and EMBL websites and list services available, software tools
	available and databases maintained.
	ii. Visiting and exploring various databases
	a. Using BLAST and FASTA for sequence analysis.
	b. Fish out homologs for given specific sequences (Decide sequence of some
	relevance to their syllabus and related to some biological problem e.g.
	evolution of a specific protein in bacteria, predicting function of unknown
	protein from new organism based on its homology).
	c. Six frame translation of given nucleotide sequence.
	d. Restriction analysis of given nucleotide sequence.
	e. Pair wise alignment and multiple alignment of a given protein sequences.
	f. Formation of phylogenetic tree.
4	Enrichment of coliphages, plaque assay.
5	Visit to Animal tissue culture laboratory to observe cultivation of animal cell lines/
	monolayer.

Sr. no.	SECTION-2 MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-II
1	Antibiotic susceptibility testing (Kirby-Bauer method) for bacterial isolates.
2	Antibiotic susceptibility testing for yeast- Candida albicans.
3	Synergistic activity of antibiotics.
4	E test (Demonstration).
5	Determination of MBC of an antibiotic.
6	Detection of β-lactamase producer by Acidometric method.
7	Differential staining of blood by the Field's staining method.
8	Blood grouping, Direct and Reverse typing, ABO and Rh grouping.
9	Determination of Isoagglutinin titre.
10	Coombs test- direct method.
11	Antigen preparation: O and H antigen preparation of Salmonella, confirmation by
	slide agglutination.
12	Widal qualitative and quantitative.
13	VDRL (Demonstration).

Sr. no.	SECTION-3 MICROBIAL BIOCHEMISTRY: PART-II
1	Qualitative detection of lipase.
2	Detection of PHB producing bacteria.
3	Qualitative and Quantitative assay of protease.
4	Protein estimation by Lowry's method.
5	Estimation of uric acid.
6	Study of breakdown of amino acids- lysine decarboxylase activity.
7	To study catabolite repression by diauxic growth curve.
8	β-galactosidase assay.

Sr. no.	SECTION-4 BIOPROCESS TECHNOLOGY: PART II
1	Chemical estimation of Penicillin.
2	Bioassay of an antibiotic (Ampicillin/ Penicillin/ Amikacin).
3	Bioassay of Cyanocobalamin.
4	Sterility testing of injectable.
5	Perform immobilization of yeast cells for invertase activity – making of beads,
	determination of activity and count using haemocytometer and viable count.
6	Preparation of bacterial biofertilizer.
7	Student activity- Isolation of phosphate solubilisers.
8	Cultivation of algae, lipid detection by staining.
9	Isolation of carotenoid producing marine red yeast.
10	Isolation of oleaginous yeast.
11	Visit to an industry.

REFERENCES: SEMESTER VI

SBSMCB601

- 1. Primrose and Twyman, 2001, "Principles of gene manipulation and genomics", 6th edition, Blackwell Publishing.
- 2. Russell, P.J., 2016, iGenetics: A Molecular Approach, 3rd edition. Noida, Pearson India Education Services.
- 3. S. Ignacimuthu, 2005, "Basic Bioinformatics", Narosa publishing house.
- 4. Willey, J.M., Sherwood, L.M., and Woolverton, C.J. 2008. Prescott, Harley and Klein's Microbiology, 7th edition. New York, McGraw Hill International Edition.
- 5. Shors, Teri. 2009. Understanding viruses. Jones and Bartlett Publishers.
- 6. Dimmock, N. J., Easton, A. J., and Leppard, K. N. 2007. Introduction to Modern Virology, 6th edition. Blackwell Publishing.
- 7. Shors, Teri. 2016. Understanding viruses, 3rd edition. Jones and Bartlett Publishers.
- 8. Wagner, Edward K., Hewlett, Martinez J., Bloom, David C., and Camerini David. 2009. Basic Virology, 3rd edition. John Wiley and Sons.
- 9. Flint, S.J., Enquist, L.W., Racaniello, V.R., and Skalka, A.M. 2009. Principles of Virology, 3rd edition. Volume I and II. American Society for Microbiology.

- 1. Ananthanarayan and Paniker, (2009), "Textbook of Microbiology", 8th edition. Universal Press.
- 2. Mims, C. "Medical Microbiology", 3rd edition Mosby.
- 3. Willey, J.M., Sherwood, L.M., and Woolverton, C.J. 2008. Prescott, Harley and Klein's Microbiology, 7th edition. New York, McGraw Hill International Edition.
- 4. Konemann, "Diagnostic Microbiology", 5th edition. Lippincott.
- 5. Konemann, "Diagnostic Microbiology", 6th edition. Lippincott.
- 6. Teri Shors "Understanding Viruses" 2nd edition Jones and Bartlett Publisher.
- 7. Richard A. Goldsby, Janis Kuby, "Immunology", 5th edition. W. H. Freeman and company.
- 8. Richard A. Goldsby, Janis Kuby, "Immunology", 6th edition. W. H. Freeman and company.
- 9. Fahim Halim Khan, "The elements of Immunology". Pearson Education.
- 10. Pathak, S., Palan U, "Immunology Essential and Fundamental", 2nd edition. Capital Publishing Company.
- 11. Ian R. Tizard, "Immunology, An Introduction", 4th edition, Saunders college publishing.

SBSMCB603

- 1. Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd.
- 2. Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley & Sons. New York.
- 3. Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag.
- 4. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press.
- 5. Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry, 4th edition, W. H. Freeman and Company.
- 6. G. Moat, J.W. Foster, M, P. Spector. (2002), Microbial Physiology, 4th edition. WILEY-LISS.
- 7. Madigan, M.T. and J.M. Martinko. 2006. 11th edition, Brock Biology of Microorganisms. Pearson Prentice Hall.
- 8. Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers.
- 9. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown publishers.
- 10. Principles of Biochemistry, Lehninger, 5th edition, W. H. Freeman and Company.

- 1. Prescott and Dunn.1982. Industrial Microbiology, 4th edition, London, Macmillan Publishers.
- 2. Okafor N, 2007, Modern Industrial Microbiology and Biotechnology, Science publishers.
- 3. Crueger W. and Crueger A. 2000 "Biotechnology -"A Textbook of Industrial Microbiology", 2nd edition, Panima Publishing Corporation, New Delhi.
- 4. Modi H. A. 2009 Fermentation Technology Vol 2, Jaipur, Pointer Publications.
- 5. Casida L. E. 2016 Industrial Microbiology, Reprint, New Delhi, New Age International (P) Ltd. Publishers.
- 6. Patel A. H. 2007 Industrial Microbiology First ED, New Delhi, Macmillan Publishers.
- 7. Stanbury P. F., Whitaker A. and Hall S. J. 1997 Principles of Fermentation Technology 2nd edition, New Delhi, Aditya Books Pvt. Ltd.
- 8. Singh B. D. 2012, Biotechnology Expanding Horizons 4th edition. Ludhiana, Kalyani Publishers.
- 9. Denyer, Stephen P., Hodges, Norman., Gorman, Sean P. and Gilmore, Brendan.2011. Hugo & Russell's Pharmaceutical Microbiology, 8th edition. Wiley-Blackwell.
- 10. Glick B.R. & Pasternak J. J., 2003, "Molecular Biotechnology, Principles and Applications of Recombinant DNA", 3rd edition, ASM Press, Washington, USA.
- 11. Awasthi, Mamta and Singh, Rajiv Kumar .2011. Development of algae for the production of bioethanol, biomethane, biohydrogen and biodiesel. Indian Journal of Current Science.1:14-23.
- 12. Sharma, Nivedita and Sharma, Poonam. 2017. Industrial and biotechnological Applications of algae: A review. Journal of Advances in Plant Biology, Vol 1, issue 1.
- 13. Dhaliwal. M.K. 2016. Isolation of carotenoids producing marine red yeasts. Indian journal of Geo-marine Science. Vol 45(8). 1029-1034.

MODALITY OF ASSESSMENT

A. Theory- Internal assessment 25%

25 marks

Sr. No	Evaluation type	Marks
1	Test	20
	a. Choose the correct alternative- 05 marks - (any five out of eight)	
	b. Answer in one or two sentences- 05 marks - (any five out of eight)	
	c. Diagrammatically explain/Describe/Justify/Explain/ Differentiate	
	between/HWY- 10 marks – (any two out of three)	
2	Attendance	05

B. Theory- External examination – 75% Semester end examination (SEE)

75 Marks

- 1. The duration of the examination will be of 2.5 hours.
- 2. Theory question paper pattern:

 There will be **five** questions. One on each unit of **15** Marks and fifth question will have questions based on all the four units with **15** Marks. The first four questions will be divided into a (subjective) and b (objective) and fifth will be entirely subjective.

PRACTICAL EXAMINATION PATTERN

- There will be no internal examination for practicals.
- External (semester end practical examination): 50 Marks per paper/section

Overall Examination and Marks Distribution Pattern

Semester V

Course	SBSMCB501			SBSMCB502			SBSMCB503			SBSMCB504			Grand Total
	In	Ex	T										
Theory	25	75	100	25	75	100	25	75	100	25	75	100	400
Practicals	ı	50	50	-	50	50	i	50	50	-	50	50	200

Semester VI

Course	SBSMCB601			SBSMCB602			SBSMCB603			SBSMCB604			Grand Total
	In	Ex	T										
Theory	25	75	100	25	75	100	25	75	100	25	75	100	400
Practicals	ı	50	50	-	50	50	-	50	50	-	50	50	200