

SOPHIA COLLEGE

(AUTONOMOUS)

Affiliated to the University of Mumbai

Syllabus for Semesters V to VI

Program: B.Sc.

Course: Life Sciences

(Choice Based Credit System with effect from the year 2019-20)

PREAMBLE Programme:

B.Sc.

Course: Life Sciences (Semester–V&VI)

As mentioned in the outline of the syllabus, all the 08 courses of theory and Practical (Semester V and VI together) are compulsory to the students offering Life Sciences as a Single Major Subject.

These courses are:

- 1. SBSLSC501and SBSLSC601
- 2. SBSLSC502and SBSLSC602
- 3. SBSLSC503and SBSLSC603
- 4. SBSLSC504and SBSLSC604

However, the students opting for Double Major Subject shall have following 04 courses of theory and Practical (Semester V and VI) compulsory:

- 1. SBSLSC501and SBSLSC601
- 2. SBSLSC502and SBSLSC602

Choice based Credit and Grading System Academic year 2018-2019

SEMESTER V

COURSE CODE	UNIT	TOPIC HEADINGS	CREDITS	LECTURES
Paper I	Genetics	and Immunology I	· · · · · ·	
SBSLSC501	1	The Genetic material		15
	2	Mechanisms of Inheritance and variation	2.5	15
	3	Overview and cells and organs of immune system		15
	4	Antigen recognition and Effector Mechanisms		15
SBSLSCP501		Practical	1.5	
Paper II	Develop	mental Biology and Neurobiolog	ју І	
SBSLSC502	1	Developmental biology: concepts, model organisms and techniques		15
	2	Animal and plant development – basic cellular aspects		15
	3	General organization of nervous system	2.5	15
	4	Cellular organization of the nervous system		15
SBSLSCP502		Practical	1.5	
Paper III	Biotechr	ology and Genetic Engineering	l	
SBSLSC503	1	Fermentation technology – Principles		15
	2	Fermentation technology - Food and Beverage Production		15
	3	Tools in Recombinant DNA technology	2.5	15
	4	Techniques in Recombinant DNA technology and applications		15
SBSLSCP503		Practical	1.5	
Paper IV	Environm	ental Biology I		
SBSLSC504	1	Introduction to fundamentals of Environmental science		15
	2	Biodiversity and habitats	2.5	15
	3	Pest management and toxicology		15
	4	Sustainable development	Г	15
SBSLSCP504		Practical	1.5	

SEMESTER II

COURSE CODE	UNIT	TOPIC HEADINGS	CREDITS	LECTURES
Paper I	Genetics	s and Immunology II		
SBSLSC601	1	Organisms and techniques used in the understanding of Genetics		15
	2	Tools and Techniques in Molecular Genetic		15
	3	Hypersensitivity, Infectious diseases, Vaccines and Immunodeficiency	2.5	15
	4	Transplantation, Tumour Immunology, Tolerance and Autoimmunity		15
SBSLSCP601		Practical	1.5	
Paper II	Develop	mental Biology and Neurobiology		
SBSLSC602	1	Animal and plant development – basic cellular and molecular aspects	2.5	15
	2	Applications of developmental biology		15
	3	Sensory and motor systems		15
	4	Neurobiological basis of behaviour		15
SBSLSCP602		Practical	1.5	
Paper III	Biotech	nology and Genetic Engineering II		
SBSLSC603	1	Fermentation technology – Enzyme and Pharmaceuticals Production		15
	2	Tissue Culture biotechnology		15
	3	Applications of recombinant DNA technology	2.5	15
	4	Tools in genetic engineering Bioinformatics Bioinformatics: Structural and functional Genomics, Comparative Genomics		15
SBSLSCP603		Practical	1.5	
Paper IV	Environm	ental Biology II		
	1	Environmental degradation		15
SBSLSC604	2	Natural resources	_	15
	—	For the second of the second stands of	2.5	15
	3	Environmental impact study		15
	3	Society and environment		15

SEMESTER V

SBSLSC501: Genetics I: The course is designed to give students understanding of basic principles of Genetics. Brief History of Genetics, Organization of Genome and ways in which gene expression is regulated is covered in first unit. The next unit deals with genes are inherited, and how variation is introduced in the genome.

SBSLSC501 Genetics I (60) Unit I: The Genetic material: (151) Discovery of the genetic: 02 Griffith"s experiment of 1928; Avery, McLeod and McCarty"s experiment of 1944; Hershey-Chase"s experiment – (Brief review, only for short notes.) 02 I. Organization of Eukaryotic and Prokaryotic Genome : 1.1 1.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model) 03 1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox"; 03 2.1 Chromatin condensation (Euchromatin, heterochromatin) 2.2 Modification and remodelling by acetylation and methylation 03 2.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors 04 Unit II:1.2 Mechanisms of Inheritance and variation (151) 1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder) 02 2.1 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model) 02 2.3 Advantages of genetic recombination during meiosis 02 3.4 Mutationa	Course Code	Title	No.of
Unit I: The Genetic material:(151Discovery of the genetic:02Griffith''s experiment of 1928; Avery, McLeod and McCarty''s experiment02Griffith''s experiment of 1928; Avery, McLeod and McCarty''s experiment03I. Organization of Eukaryotic and Prokaryotic Genome :1.11.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model)031.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox";032. Gene regulation in eukaryotes2.1102.1 Chromatin condensation (Euchromatin, heterochromatin)032.2 Modification and remodelling by acetylation and methylation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation any human genetic disorder)(1512. Introduction to genetic recombination any human genetic disorder)022. Introduction to genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)023.3 Mutational Variation: 3.1 Natural biological			Lectures
Discovery of the genetic: 02 Griffith''s experiment of 1928; Avery, McLeod and McCarty''s experiment of 1944; Hershey-Chase''s experiment – (Brief review, only for short notes.) 0 I. Organization of Eukaryotic and Prokaryotic Genome : 1.1 1.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model) 03 1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox"; 03 2. Gene regulation in eukaryotes 2.1 Chromatin condensation (Euchromatin, heterochromatin) 03 2.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors 04 Unit II:1.2 Mechanisms of Inheritance and variation (151 1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder) 02 2. Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model) 02 3.4 Advantages of genetic recombination during meiosis 02 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 02 3.2. A. Types of eukaryotic transposons , their mechanism	SBSLSC501	Genetics I	(60L)
Griffith''s experiment of 1928; Avery, McLeod and McCarty''s experiment 01944; Hershey-Chase''s experiment – (Brief review, only for short notes.) 1. Organization of Eukaryotic and Prokaryotic Genome : 1.1 1.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model) 03 1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox"; 03 2. Gene regulation in eukaryotes 2.1 Chromatin condensation (Euchromatin, heterochromatin) 03 2.3 Transcriptional regulation 03 Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors 04 Unit II:1.2 Mechanisms of Inheritance and variation (151 1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of old any human genetic disorder) 02 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/Site directed) 02 2.1 Types of naturally occurring genetic recombination (e.g Holliday Model/Double strand break model) 02 3.3 Advantages of genetic recombination during meiosis 02 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 02 3.2. A.	<u>Unit I:</u> The Gen	etic material:	(15L)
of1944; Hershey-Chase''s experiment – (Brief review, only for short notes.)1. Organization of Eukaryotic and Prokaryotic Genome :1.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model)1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox";2. Gene regulation in eukaryotes 2.1 Chromatin condensation (Euchromatin, heterochromatin) Cis-acting regulatory sequences, promoters and enhancers. Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation any human genetic disorder)2. Introduction to genetic recombination 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)2.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)2.3 Advantages of genetic recombination during meiosis 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance	Discovery of th	e genetic:	02
of1944; Hershey-Chase''s experiment – (Brief review, only for short notes.)1. Organization of Eukaryotic and Prokaryotic Genome :1.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model)1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox";2. Gene regulation in eukaryotes 2.1 Chromatin condensation (Euchromatin, heterochromatin) Cis-acting regulatory sequences, promoters and enhancers. Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation any human genetic disorder)2. Introduction to genetic recombination 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)2.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)2.3 Advantages of genetic recombination during meiosis 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance	Griffith"s experi	ment of 1928; Avery, McLeod and McCarty"s experiment	
1.1 Structural organization of Prokaryotic and Eukaryotic genome (CCC DNA, Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model) 03 1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox"; 03 2. Gene regulation in eukaryotes 03 2.1 Chromatin condensation (Euchromatin, heterochromatin) 03 2.2 Modification and remodelling by acetylation and methylation 03 2.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors 04 Unit II:1.2 Mechanisms of Inheritance and variation (15) 1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder) 02 2. Introduction to genetic recombination 02 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed) 02 2.3 Advantages of genetic recombination during meiosis 02 3. Mutational Variation: 02 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 02 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 02			
Nucleosome structure, higher orders of chromosome packaging, Solenoid model, zig-zag model)031.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox";032. Gene regulation in eukaryotes032.1 Chromatin condensation (Euchromatin, heterochromatin)032.2 Modification and remodelling by acetylation and methylation032.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(15)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of nound purposed models for genetic recombination (e.g Homologous/Non homologous/site directed)022.1 Mutational break model)032.3 Advantages of genetic recombination during meiosis023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	1. Organization	of Eukaryotic and Prokaryotic Genome :	
zig-zag model)1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox";032. Gene regulation in eukaryotes12.1 Chromatin condensation (Euchromatin, heterochromatin)032.3 Transcriptional regulation03Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(1511. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination (e.g Holliday Model/Double strand break model)022.3 Advantages of genetic recombination during meiosis023.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	1.1 Structural or	ganization of Prokaryotic and Eukaryotic genome (CCC DNA,	
1.2 Sequence complexity of DNA - Unique and repetitive sequences (SINE, LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox"; 03 2. Gene regulation in eukaryotes 03 2.1 Chromatin condensation (Euchromatin, heterochromatin) 03 2.2 Modification and remodelling by acetylation and methylation 03 2.3 Transcriptional regulation 03 Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors 04 Unit II:1.2 Mechanisms of Inheritance and variation (15) 1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder) 02 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed) 02 2.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model) 02 3.3 Mutational Variation: 02 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 02 3.2. A. Types of eukaryotic transposons , their mechanism of action, (e.gAcDs 04 system in maize, P element transposition) and inheritance 02	Nucleosome stru	cture, higher orders of chromosome packaging, Solenoid model,	03
LINE, Microsatellite, mini satellite DNA), Denaturation kinetics and "CoT" value and interpretation of Cot curves; "C value paradox";032. Gene regulation in eukaryotes032.1 Chromatin condensation (Euchromatin, heterochromatin)032.2 Modification and remodelling by acetylation and methylation032.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(15)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination (e.g Homologous/Non homologous/site directed)022.3 Advantages of genetic recombination during meiosis023.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	zig-zag model)		
and interpretation of Cot curves; "C value paradox";2. Gene regulation in eukaryotes2.1 Chromatin condensation (Euchromatin, heterochromatin)2.2 Modification and remodelling by acetylation and methylation032.3 Transcriptional regulationCis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)2. Introduction to genetic recombination2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)2.2 Mechanism and proposed models for genetic recombination (e.g Holliday 	1.2 Sequence co	mplexity of DNA - Unique and repetitive sequences (SINE,	
2. Gene regulation in eukaryotes 2.1 Chromatin condensation (Euchromatin, heterochromatin) 2.2 Modification and remodelling by acetylation and methylation 03 2.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors 04 Unit II:1.2 Mechanisms of Inheritance and variation (151 1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of 02 any human genetic disorder) 2. Introduction to genetic recombination 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed) 2.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model) 2.3 Advantages of genetic recombination during meiosis 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance	LINE, Microsate	ellite, mini satellite DNA), Denaturation kinetics and "CoT" value	03
2.1 Chromatin condensation (Euchromatin, heterochromatin)032.2 Modification and remodelling by acetylation and methylation032.3 Transcriptional regulation03Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(151)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.3 Advantages of genetic recombination during meiosis023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposants , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	and interpretatio	n of Cot curves; "C value paradox";	
2.2 Modification and remodelling by acetylation and methylation032.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(151)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)022.3 Advantages of genetic recombination during meiosis023.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposants , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	2. Gene regulat	ion in eukaryotes	
2.3 Transcriptional regulation Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(1511. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination021. Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	2.1 Chromatin c	ondensation (Euchromatin, heterochromatin)	
Cis-acting regulatory sequences, promoters and enhancers. Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(151)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	2.2 Modification	and remodelling by acetylation and methylation	03
Transcription activators and repressors04Unit II:1.2 Mechanisms of Inheritance and variation(151)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)022.3 Advantages of genetic recombination during meiosis023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance04	2.3 Transcription	onal regulation	
Unit II:1.2 Mechanisms of Inheritance and variation(151)1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)022.3 Advantages of genetic recombination during meiosis023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	Cis-acting	regulatory sequences, promoters and enhancers.	
1. Inheritance pattern of Genetic Disorders in Humans (Prognosis, Testing, of any human genetic disorder)022. Introduction to genetic recombination022.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed)022.2 Mechanism and proposed models for genetic recombination (e.g Holliday Model/Double strand break model)022.3 Advantages of genetic recombination during meiosis023. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	Transcript	ion activators and repressors	04
any human genetic disorder)2. Introduction to genetic recombination2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Nonhomologous/site directed)2.2 Mechanism and proposed models for genetic recombination (e.g HollidayModel/Double strand break model)2.3 Advantages of genetic recombination during meiosis3. Mutational Variation:3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and02their significance3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs04 system in maize,P element transposition) and inheritance	Unit II:1.2 Mec	hanisms of Inheritance and variation	(15L)
 2. Introduction to genetic recombination 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed) 2.2 Mechanism and proposed models for genetic recombination (e.g Holliday 02 Model/Double strand break model) 2.3 Advantages of genetic recombination during meiosis 3. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and 02 their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 	1. Inheritance p	pattern of Genetic Disorders in Humans (Prognosis, Testing, of	02
 2.1 Types of naturally occurring genetic recombination. (e.g Homologous/Non homologous/site directed) 2.2 Mechanism and proposed models for genetic recombination (e.g Holliday 02 Model/Double strand break model) 2.3 Advantages of genetic recombination during meiosis 02 3. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 	any human gene	tic disorder)	
 homologous/site directed) 2.2 Mechanism and proposed models for genetic recombination (e.g Holliday 02 Model/Double strand break model) 2.3 Advantages of genetic recombination during meiosis 3.4 Advantages of genetic recombination during meiosis 3.5 Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 	2. Introduction	to genetic recombination	
 2.2 Mechanism and proposed models for genetic recombination (e.g Holliday 02 Model/Double strand break model) 2.3 Advantages of genetic recombination during meiosis 02 3. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 	2.1 Types of nat	urally occurring genetic recombination. (e.g Homologous/Non	02
Model/Double strand break model)022.3 Advantages of genetic recombination during meiosis023. Mutational Variation:023.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance023.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance02	homologous/site	directed)	
 2.3 Advantages of genetic recombination during meiosis 3. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 	2.2 Mechanism	and proposed models for genetic recombination (e.g Holliday	02
 3. Mutational Variation: 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 	Model/Double s	trand break model)	
 3.1 Natural biological mutagenic agents – Prokaryotic Transposable elements and their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance 		0	02
their significance 3.2. A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance	3. Mutational V	'ariation:	
3.2 . A. Types of eukaryotic transposons , their mechanism of action,(e.gAcDs 04 system in maize,P element transposition) and inheritance			02
04 system in maize,P element transposition) and inheritance	-		
	••		S
23D Application of transposchla alamenta in constitut	-	-	
J.2.D. Application of transposable elements in genetics 01	3.2.B. Application	on of transposable elements in genetics	01

SBSLSC501: Immunology I: This course of Immunology is formulated to provide good knowledge of the immune system, its response and involvement in health and disease. While immunology as a *science* has been defined as the "science of self/non self discrimination", it also includes our innate ability to defend against microorganisms (Innate Immunity); and its ability to recognize and respond to fight the infections through Acquired Immunity. Specific topics being covered include antigens and antibodies, antigen-antibody interactions, antibody structure and formation, Effector responses etc.

Course Code	Title	No.of
		Lectures
SBSLSC501	Immunology I	(60L)
UNIT – III Ove	erview and cells and organs of immune system	(15L)
3.1. Historical I	Perspective - Early Vaccination studies; Infection and immunity	01
Overview of the	e Immune system - Innate Vs Adaptive Immunity	
3.1.a Innate imm	nunity	02
· · · · ·	ical, Physiological, Phagocytic, Inflammatory barrier	02
· · ·	t of PAMP, PRR and TLR	
	organs of the immune system	03
ŕ	structure and functions	
Myeloid		
• •	id cells – B and T cells, NK cells	
	y and secondary lymphoid organs	
3.2 Antigens an		01
3.2.a.Immunogenicity versus antigenicity		
, .	-Specificity, avidity, affinity, cross reactivity, haptens,	
adjuvants		
· 1	es of immunogen contributing to immunogenicity	
3.2.b Antibodie		
,	tructure of antibodies	
	s of antibodies and biological activity	
	onal antibodies	
	tion and expression of Immunoglobulin genes	03
, .	ne organization and gene rearrangement	
	tion of antibody diversity	
iii) Class	0	03
-	antibody interactions – Principles and applications	05
-	ion, Immunoelectrophoresis, Agglutination,	
	nunoassay, ELISA, Immunofluorescence, Monoclonal	
antibodies	s (Hybridoma Technique)	

	(15L)
UNIT – IV Antigen recognition and Effector Mechanisms	
4.1 Recognition of antigens.	
4.1.aMajor Histocompatibility Complex	02
i) MHC molecules and genes	
ii) MHC allelic polymorphism	
iii) Cellular expression of MHC	
iv) Self MHC restriction of T cells	
4.1 b Antigen processing and presentation	02
i) Endogenous antigens – the cytosolic pathway	
ii) Exogenous antigens – the endocytic pathway	
4.2 Maturation and activation of Lymphocytes	02
4.2.a B- cell Maturation, Activation and Differentiation	02
4.2.b i) T- cell receptor – Structure and role of $\alpha\beta$ and $\gamma\delta$ receptors	01
ii) T cell receptor complex and accessory membrane molecules	
4.2.cT- cell Maturation, Activation and Differentiation	02
4.3 Immune Effector Mechanisms	
4.3.aCytokines IL-1, IL-2, IL-4, IFNs and TNFs ii)	01
Cytokine secretion by T_H1 and T_H2 cells	01
4.3.bComplement	02
i) Classical, alternate and lectin pathways and comparison	
ii) Biological consequences of complement activation	
iii) Complement fixation tests	
4.3.cCell-mediated effector responses	03
Cell-mediated cytotoxicity of T cells, NK cells, ADCC	03
Role of T_H1 , T_H2 , T_H17 and Tc cells	

SBSLSC502: Developmental Biology I: The course will introduce to the students the basic concepts of developmental biology, which is the process by which animals and plants grow from a single original zygote. This module describes the important model systems and technique used to understand developmental process. The early process of animal development will be explained using the amphibian and chick as examples and plant development using Arabidopsis.

Course Code	Title	Lectures
SBSLSC 502	DEVELOPMENTAL BIOLOGY ANDNEUROBIOLOGY I	2.5 Credits (60
UNIT 1 :	Developmental Biology : Concepts, Model organisms and techniques	Lectures) 15 Lectures
1.1	History of concepts in development	1 lecture
1.2	 Some basic concepts of developmental biology: Overview: Development is a gradual process by which a complex multicellular organism arises from a single cell (the zygote). It involves 5 major overlapping processes: 1. Growth: increase in size 2. cell division: increase in number 3. differentiation: diversification of cell types 4. pattern formation: organization 5. morphogenesis: generation of shapes and structures 	2 lectures
1.3	Life Histories of Model Organisms highlighting some important concepts: <i>Dictyostelium-</i> cell signalling and morphogenetic gradient <i>Drosophila:</i> Overview of invertebrate body plan (Life Cycle and body plan) Zebrafish :Overview of vertebrate body plan (Life Cycle and body plan)	6 lectures
1.4	Experimental approaches to studying development: Fate mapping and lineage tracing (Chick) Mutations and large scale mutagenesis screens (Drosophila) Transgenic techniques and gene silencing (Zebra fish/ mice)	6 lectures
Unit 2: A	nimal and Plant development – Basic Cellular aspects	15 lectures
2.1	Development in Animals :-	
2.1 a 2.1 b	Amphibian development- Germ cell formation : meiosis and cytoplasmic state of the egg; Fertilization : Cell signalling and Factors affecting fertilisation; Cleavage, Morula and blastula: Concept of potency and regulatory development; Gastrulation : Spemann''s Organizer; Three germ layers and origins of organs; Neural tube Induction and formation of neural tube Chick development – In Comparison with amphibian in the processes of Germ cells and Fertilization, Cleavage, Morula and blastula,	5 lectures

	Gastrulation and Neurulation	
2.2	Development in Plants :-	
	Life cycle of Arabidopsis – sporophytic and gametophytic generation,	5 lectures
	Fertilization and embryo development,	
	Development of meristems (root and shoot),	
	Development of different organs – leaf, flower, androecium [including	
	development of anthers, pollen grain, pollen tube etc.] and gynoecium	
	[development of pistil - up to formation of embryo sac], Double	
	fertilization, seed formation. [Eventual formation of fruit],	

SBSLSC502:Neurobiology I:This module describes the anatomical organization of the nervous system and its early development. It also explains the cellular basis of nerve conduction within a neuron and transmission across synapses including a description of the neurotransmitters

UNIT 3 :(15 Lectures			
3.1.	Comparative overview ofvertebrate and invertebrate nervous system	2 lectures		
3.1.b	Vertebrate nervous system:- Anatomy and functional features of CNS (cerebral hemispheres, cerebellum, diencephalon, medulla, pons, midbrain and spinal cord), PNS (autonomous, somatosensory, cranial, spinal, plexii)	5 lectures		
3.1.c	Role of meninges and CSF, concept of blood brain barrier.	1 lecture		
3.1.d	Limbic System (emotions and memory)	1 lecture		
3.1.e	Hypothalamo – Hypophysial Axis (stress)	1 lecture		
3.2	Development of the nervous system:			
3.2.a	Specification of cell identity in the nervous system	2 lectures		
3.2.b	The formation and migration of neuron	1 lecture		
3.2.c	Axon navigation	1 lecture		
3.2.d	Synapse formation and refinement	1 lecture		
UNIT 4:	UNIT 4: Cellular organization of the nervous system 15 lectu			
4.1	Typical nerve cell, Types of cells: Neurones, Glial cells	1 lecture		

4.2	Chemical Basis of Neural transmission- Introduction Ionic basis of resting membrane potential: types of ion channels, Nernst"s potential, Goldman"s equation, Sodium –Potassium pump	3 lectures
4.3	Action Potential & propagation: Hodgkin and Huxley's model, voltage clamp experiment and the generation and propagation of Action Potential, Graded potential. A comparative Plant example: Electrical signaling and closing of Venus flytrap.	3 lectures2 lectures
4.4	Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Post Synaptic Potential (EPSP), Inhibitory Post Synaptic Potential (IPSP)	2 lectures
4.5	Synapse and synaptic transmission: Synapse: Structure, Types – Electrical and chemical; Neuro – muscular junctions; miniature endplate potentials (MEPPs)	4 lectures
4.6	Neurotransmitters – General Introduction Biosynthesis, physiological role, pharmacological significance, (examples of one agonist and one antagonist for each neurotransmitter mentioned below. Acetylcholine (Nicotinic and muscarinic receptors). Dopamine (D1 and D2 receptors). GABA and Glutamate Neuropeptide (Endorphin and Enkephalin).	

SBSLSC503: Biotechnology I: The course is designed to make students familiar with basics of

fermentation techniques. Students will learn how food and beverages are produced at Industrial

scale using ferm	ientation.	
Course Code	Title	No. of
		Lectures
SBSLSC503	Biotechnology and Genetic Engineering	2.5 credits
		60
UNIT I: Ferme	ntation technology – Principles	15
1.1. History and	01	
1.2. Fermentatio	01	
1.3.a. Principles	01	
1.3.b. Screening	(primary &secondary)	01
1.3.c. Strain imp	02	
resistance	e	
1.4. The Bioreac	tor / Fermenter & accessories (Stirred tank & Airlift)	02
1.5. Media desig	02	

1.6. Downstream processing (use example of Penicillin and an enzyme for cell	01
disruption)	
1.7. Instrumentation: Principles and technique of Centrifugation,	04
Spectrophotometry & Chromatography	
UNIT II: Fermentation technology - Food and Beverage Production	15
2.1. Batch vs. Continuous fermentation	02
2.2. Technological aspects of industrial production of:	
2.2.a. Cheese	02
2.2.b. Beer	02
2.2.c. Vinegar	01
2.2.d. Single Cell Protein	01
2.2.e. Mushroom	02
2.2.f. Yoghurt	01
2.2.g. Wine	01
2.3. Food quality assurance: Regulatory & social aspects of food biotechnology	02
2.4. IPR and patents (Example, Organism, technology)	01

SBSLSC503: Genetic Engineering

I: This course is structured to make students understand basic tools utilized in Recombinant DNA technology. Students will be familiar with various enzymes, vectors, and analytical techniques that are fundamental to understanding of genetic engineering. Students should be able to plan cloning strategy of gene of interest by end of this course.

UNIT III: Tools in Recombinant DNA technology	15
3.1: Tools in Molecular Biology	
3.1.a. Restriction Enzymes – Nomenclature, General nature of action, Major	03
categories based on type of cut, two typical examples each and	
recognition sites	
3.2.b.DNA joining strategies: DNA ligase, Homopolymer tailing, Adaptors,	02
Linkers, Use of Alkaline Phosphatase.	
3.2 Vectors in genetic engineering –	
3.2.a. Phages (λ, M13, SV40, Adenovirus)	04
3.2.b. Plasmids (pBR322, pUC with blue white screening), Ti plasmids in plants	03
3.2.c. Cosmids, Phagemids	01
3.2.d. YAC, BAC, PAC	02
Unit IV: Techniques in Recombinant DNA technology and applications	15
4.1. Gel electrophoresis	03
(Principle, technique and application of Agarose, PAGE, 2D-GE)	
4.2. Blotting	03
(Principle, technique and application of Western, Southern, Northern blotting)	
4.3.a.PCR	01
4.3.b. Variations of PCR - RT-PCR, QPCR (Principle, technique and	01
application)	
4.3.c. Variations in Primer – Nested PCR, Poison Primer Technique, Universal	01
primers	
4.4. Restriction mapping, DNA fingerprinting (Principle,technique, applications)	
- SNP, VNTR, RFLP, AFLP	04
4.5. Cloning of a gene (Somatostatin)	02

SBSLSC504: ENVIRONMENTALBIOLOGY1: This syllabus is designed to understand the environment around us. It introduces the fundamental concepts of environment and the biodiversity around us. The students will understand different features of a habitat, also the problems associated with their management and conservation. The issues and problems regarding the natural resources is featured along with detailed coverage on sustainability.

CourseCode	Title	Lectures
SBSLSC504	ENVIRONMENTALBIOLOGY1	2.5Credits (60 Lectures
Unit IIntroduction	toFundamentalsofenvironmentalscience	15 Lectures
	al History and Natural resources: ope and Importance	1lectures
Historical Mod cultivation d) I	les of Resource Use: a) Gathering, b) Nomadic c) Settled ndustry Controlled exploitation of natural resources: A case n India- timber/coal mining	2Lectures
Species Interac Higher order in succession, red	Ecology: Concept of community (E.g. Forest as a community) etion, Prey Predator interaction. Food chain, Food web and interactions: Succession seral communities in secondary listribution of population after land fragmentation, loss of species	3Lectures
(fire and succe	ssion).	2Lectures
density, Age c	cology: Population parameters- Spacing, size and omposition, Survivorship curves, recruitment, Population growth- ential, Geometric growth.	1lectures
	eles, population dynamics and models of population mpetition and predation	3Lectures
•	ality, Biotic potential, Carrying capacity, density dependence, proving carrying capacity and its application in wildlife	
-	es: example: Lantana camara /Prosopsisjulifera	
1.2. Ecosystem dy	namics:	1Lectures
1.2.a. Energy flow,	primary and secondary productivity, Ecological Pyramids.	1lectures
	r: Soil Profile, Soil food web (components and interactions) bil management and agriculture.	1lectures
1.2.c. Anthropogen cycles (S, P an	ic effects on Biogeochemical cycles of Carbon and Nutrient d N).	

UNITII	<u>15 Lectures</u>
2.1.BiodiversityandHabitats:	1 Lectures
2.1.a. Biomesoftheworld:	
climate, vegetation and Geographical distribution pattern. Tropical bio mes, desert, temperate, taiga and tundrabiome.	1Lectures
2.1.b.BiologicaldiversityofIndia: IndianBio- geographicZones,climateanditsimpactonbiodiversity.	
2.2.Indianfloraandfauna	2Lectures
2.2.a. Indianforestandvegetationtypes:diversityoffloraandfauna. Endangered, EndemicandExtinctSpeciesofIndia: Threatened species categoriesofIUCN,threatenedspeciesofplantsandanimalsinIndia and their reasons, Reddatabooks.	1Lecture
2.2.b. Environmentalbiotechnology:Roleofbiotechnologyinconservationof species, in-situand ex-situconservation. (concept of Gene Bank)	2 Lectures
2.2. c. Wildlife management and conservation: Wild life management: Goals and Strategies., Human land-use and wildlife management – Elephant Corridor Vulture Conservation Centre, Haryana.(an BNHS initiative), Wildlife crossings.	4Lectures
2.3. India and Multilateral Environmental agreements	
2.3.a. Implications of Environmental Agreements to India: Ratification, Becoming a Signatory, Responsibilities, Obligations, expectations and challenges.	
2.3.b. RAMSAR Convention on Wetlands	
2.3.c. IUCN (International Union for Conservation of Nature and Natural Resources)	
2.3.d. Convention on Biological Diversity	
2.3.e. CMS(Conventionon the Conservation of Migratory Species)	
2.3.f. Basel Convention on the Control of Trans boundary Movement of Hazardous Waste and Their Disposal	
2.3g.KyotoProtocol	41
2.3h. IWC (International Whaling Commission)	4Lectures
2.4.Population and consumptionDynamicswithspecialreference to Human:	
2.4.a Energy and food production (grains, Livestock, aqua culture): Green revolution, Blue revolution. Nutrition: micro and macro nutrition, Ecological costs of food production. Organic Farming, Climate change and impact on Agriculture.	
2.4.b . GM foods and their environmental concerns eg .Bt Brinjal, Politics and economics of Hunger, Intellectual Property Rights (IPR), Biopiracy (e.g., Neem/Basmati) Relevance of Seed Bank.	

UNITIII	15 Lectures
3.1.Pestandpesticides : 3.1.a. BasicintroductionaboutPests, Pesticidesand Environment	1 Lecture
3.1.b.Pesticidetoxicity:BioaccumulationandBiomagnification,persistence, resistanceandpollutionhealthoffarmers.Newmethodsofpestcontrol: Biologicalpestcontrol:predatorsparasites,and pathogens. Genetically Engineeringandpestcontrol, Integratedpestmanagement	3Lectures
3.1.c. BioremediationofOP pesticide: usingBacillusSps.(eg. Malathion Pesticide)	1Lectures
3.1.d. Phytoremediation of Organochlorine pesticide (Chloropyrifos) using plants	2Lectures
3.1.e.Pesticideregulation:eg.Endosulphanissue.	
 3.2. ToxicologyManagement. 3.2.a. Toxicology:Basicconcepts,toxicityanditsimpacts Distribution of Toxic material in the environment and Exposure risk assessment. Routes of entry, Absorption and translocation, fate of toxic agent Assessment of toxicity - Indices of 	3Lectures
toxicity(e.g.LD50,LC50,EL50,NOEL) Industrial toxicants and hazardous materials, toxic and hazardous waste management, measurement of toxicity, TLM and lethality studies, physiological and metabolic effects on flora and fauna.	2Lectures
3.2.b. LimitationofToxicologicalstudies: Comparisonofanimaltoxicologicalmodelsand Toxicity inHumans.	2Lectures
3.2.c. Humanclinicaltrials:ConceptofClinicaltrialphases-I,2,3and Pharmacovigilance.	1Lecture
3.2.d. Ethicalissuesofclinicaltrials: (e.g.Thalidomide) and significance of Helsinki declaration.	

 <u>Unit IV</u> 4.1 Community and Environment Conservation. 4.1a. Case study- Amur Falcon and tribal community of Nagaland 4.1b.One man role in conservation A Case Study – Dr. Rajendra Singh (Water man of India) 4.1c. Role of local communities in wildlife management initiatives. Case study- Kokrabellur Village. 	<u>15 Lectures</u> 3Lectures 2Lectures
4.2. Citizen Awareness andenvironmentallegal provisions:	2Lecture
Environmental Law and Constitution of India: ConstitutionalProvisions:Article 21,Article 48A, Article 51A(g),	3Lecture
 Environment protection Act1986,MoEF(1985) Laws related to environmental protection and wildlife : The Environment (Protection) Act, 1986; The Forest (Conservation) Act, 1980; The Wildlife Protection Act, 1972; Water (Prevention and Control of 	5Lectures
Pollution) Act, 1974; Air (Prevention and Control of Pollution) Act, 1981 and Forest Rights Act,2006.National Green Tribunal	

SemesterVI

SBSLSC601: Genetics II: The course deals with organisms and techniques used in understanding molecular genetics. Students are expected to learn how genes are mapped on chromosomes. The second unit introduces principle and applications behind tools used in Genetics.

Course Code	Title	No.of
		Lectures
SBSLSC601	Genetics II	
(60L) <u>Unit I:</u> O	rganisms and techniques used in the understanding of Genetics	
(15L)		
1. Genetic reco	mbination and Gene mapping (Processes and numerical	
problems)		
1.1 Bacterial Co	njugation	01
1.2 Three factor	crosses in maize	02
1.3 Co-efficient	of co-incidence and interference in Drosophila	02
1.4 Complemen	tation analysis in Humans using Haemoglobin	02
1.5. Life Cycle	of lytic and lysogenic phages; Deletion mapping	02
2.Human Gene	tics	
2.1. Human Ger	netic Maps, Somatic cell Genetics: Use of cell hybrids and	03
hybridomas for	gene mapping; The lod Score Method for Analyzing Linkage of	
Human Genes		
	Genome Project : aims, major features and applications(e.g.	03
detecting polym	orphism, personalized medicine)	
<u>Unit II:</u> Tools a	and Techniques in Molecular Genetics	(15L)
3.1 Agarose gel	electrophoresis (Principle, methodology, Applications)	02
3.2 Polymerase	Chain Reaction (Principle, methodology, Applications)	02
3.3 Restriction e	enzymes and Restriction mapping	02
3.4 DNA Seque	ncing – Sanger"s Method, Next Gen Sequencing	02
3.5 PCR based 1	nethods of Induced mutagenesis (Site-Directed mutagenesis,	02
Cassette mutage	enesis)	
3.6 Mutagenicit	y testing – Ames test, Sister chromatid exchange test, mouse	02
specific locus te	st (Advantages and disadvantages)	
3.7 Nucleic acid	in situ Hybridization (FISH) and Chromosome painting	01
3.8 Hybrid arres	t and Hybrid release method (HRT and HART)	01
3.9 Overview of	Cloning Insulin	01

SBSLSC601: Immunology II : This course mainly deals with the section of immunology which encompasses the aetiology of various diseases caused by disorders of the immune system either due to its failure (immunodeficiency), aberrant action (Hypersensitivity, autoimmunity), or malignant growth of cellular elements (Cancer) and clinical management (Vaccines).

SBSLSC601 Immunology II (60L) UNIT - III :Hypersensitivity, Infectious diseases, Vaccines and Immunodeficiency (15L) JI Hypersensitivity 05 Gell and Coombs classification: 3.1. Types of hypersensitivity – Examples and methods of diagnosis i) IgE- mediated (Type I) hypersensitivity: RIST and RAST ii) Antibody-mediated(Type II) hypersensitivity: Agglutination iii) Immune complex-mediated(Type III) hypersensitivity: Immunofluorescence, ELISA iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 07 3.2.almportant immune mechanisms against various infectious diseases i) Viral infections 07 ii) Bacterial infections 07 ii) Parasitic infections 07 ii) Parasitic infections 07 ii) Viral infections 07 ii) Parasitic infections 07 ii) Active immunization - Preformed antibodies and their disadvantages 07 ii) Vaso of Chimera / humanized antibodies 01 iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) 03 3.3.Brimary immunodeficiency 03 i) B-cell- X-linked agammaglobulinemia 01 ii) T-cell Di George Syndrome 03 iii) Lymphoid deficiency - Severe Combined Immunodeficiency 03	Course Code	Title	No.of
UNIT - III : Hypersensitivity, Infectious diseases, Vaccines and (15L) Immunodeficiency 05 3.1 Hypersensitivity 05 Gell and Coombs classification: 3.1. Types of hypersensitivity – Examples and methods of diagnosis i) IgE- mediated (Type I) hypersensitivity: RIST and RAST 05 ii) Antibody-mediated(Type II) hypersensitivity: Agglutination 01 iii) Immune complex-mediated(Type III) hypersensitivity: 05 Jumunofluorescence, ELISA 07 iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 07 3.2 Infectious Diseases and Vaccines 07 i) Datayet type hypersensitivity(Type IV) : Tuberculin test 07 i) Viral infections 03 ii) Parasitic infections 03 ii) Passive immunization - Preformed antibodies and their disadvantages 03 ii) Visubunit Vaccines (Polysaccharide, toxoid and peptide vaccines) 03 v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 03 ii) T-cell- Di George Syndrome 03 iii) Lymphoid deficiency - Severe Combined Immunodeficiency 03 ii) Lymphoid deficiency Severe Combined Immunodeficiency 03 ii) Lymphoid deficiency			Lectures
Immunodeficiency053.1 HypersensitivityGell and Coombs classification:3.1. Types of hypersensitivity – Examples and methods of diagnosisi)i) IgE- mediated (Type I) hypersensitivity: RIST and RASTii) Antibody-mediated(Type II) hypersensitivity: Agglutinationiii)iii) Immune complex-mediated(Type III) hypersensitivity:Immunofluorescence, ELISAiv) Delayed type hypersensitivity(Type IV) : Tuberculin test3.2 Infectious Diseases and Vaccines3.2.almportant immune mechanisms against various infectious diseases07ii) Bacterial infectionsiii) Fungal infectionsiii) Fungal infections07iii) Parasitic infections3.2 b. Vaccinesi) Passive immunization - Preformed antibodies and their disadvantages07ii) Jest of Chimera / humanized antibodiesiii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio)v) DNA vaccines3.3 Immunodeficiency: Primary and acquired Immunodeficiency03i) B-cell- X-linked agammaglobulinemiaii) T-cell- Di George Syndrome03ii) Lymphoid deficiency of myeloid lineage- Chronic Granulomatous Disease3.3.bAcquired Immunodeficiency			(60L)
3.1 Hypersensitivity05Gell and Coombs classification:3.1. Types of hypersensitivity – Examples and methods of diagnosisi)i) IgE- mediated (Type I) hypersensitivity: RIST and RASTii) Antibody-mediated(Type II) hypersensitivity: Agglutinationiii) Immune complex-mediated(Type III) hypersensitivity:Immunofluorescence, ELISAiv) Delayed type hypersensitivity(Type IV) : Tuberculin test3.2 Infectious Diseases and Vaccines3.2.aImportant immune mechanisms against various infectious diseases07ii) Parasitic infectionsiii) Fungal infectionsiii) Fungal infections07iii) Parasitic infections3.2 b. Vaccinesi) Passive immunization - Preformed antibodies and their disadvantages07iii) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines)v) DNA vaccines033.3 Immunodeficiency: Primary and acquired Immunodeficiency03i) T-cell- Di George Syndromeii) Lymphoid deficiency - Severe Combined Immunodeficiency03	UNIT – III :Hy	persensitivity, Infectious diseases, Vaccines and	(15L)
Gell and Coombs classification:3.1. Types of hypersensitivity – Examples and methods of diagnosisi)3.1. Types of hypersensitivity – Examples and methods of diagnosisi)IgE- mediated (Type I) hypersensitivity: RIST and RASTii) Antibody-mediated(Type II) hypersensitivity: Agglutinationiii) Immune complex-mediated(Type III) hypersensitivity:Agglutinationiii) Immune complex-mediated(Type III) hypersensitivity:Immunofluorescence, ELISAiv) Delayed type hypersensitivity(Type IV) : Tuberculin test3.23.2 Infectious Diseases and Vaccines3.2.aImportant immune mechanisms against various infectious diseases07ii) Bacterial infectionsiii) Fungal infectionsiv) Parasitic infectionsiii) Pangai infections3.2 b. Vaccines3.2 b. Vaccinesi) Passive immunization - Preformed antibodies and their disadvantagesii) Use of Chimera / humanized antibodiesiii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio)iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines)v) DNA vaccines033.3 Immunodeficiency: Primary and acquired Immunodeficiency03ii) T-cell- Di George Syndromeiii) Lymphoid deficiency - Severe Combined Immunodeficiency03ii) Lymphoid deficiency of myeloid lineage- Chronic Granulomatous Disease3.3.bAcquired Immunodeficiency		•	
 3.1. Types of hypersensitivity – Examples and methods of diagnosis i) IgE- mediated (Type I) hypersensitivity: RIST and RAST ii) Antibody-mediated(Type II) hypersensitivity: Agglutination iii) Immune complex-mediated(Type III) hypersensitivity: Immunofluorescence, ELISA iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 3.2 Infectious Diseases and Vaccines 3.2. almportant immune mechanisms against various infectious diseases i) Viral infections ii) Bacterial infections iii) Fungal infections iii) Parasitic infections 3.2 b. Vaccines i) Deasive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	• -	-	05
 i) IgE- mediated (Type I) hypersensitivity: RIST and RAST ii) Antibody-mediated(Type II) hypersensitivity: Agglutination iii) Immune complex-mediated(Type III) hypersensitivity: Immunofluorescence, ELISA iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 3.2 Infectious Diseases and Vaccines 3.2.aImportant immune mechanisms against various infectious diseases i) Viral infections ii) Bacterial infections iii) Fungal infections iii) Fungal infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages iii) Active immunization - Preformed antibodies and their disadvantages iii) Active immunization - Preformed antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 			
 ii) Antibody-mediated(Type II) hypersensitivity : Agglutination iii) Immune complex-mediated(Type III) hypersensitivity: Immunofluorescence, ELISA iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 3.2 Infectious Diseases and Vaccines 3.2.aImportant immune mechanisms against various infectious diseases i) Viral infections ii) Bacterial infections iii) Fungal infections iii) Fungal infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Active immunization - Preformed antibodies and their disadvantages iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	3.1. Type	s of hypersensitivity – Examples and methods of diagnosis	
 iii) Immune complex-mediated(Type III) hypersensitivity: Immunofluorescence, ELISA iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 3.2 Infectious Diseases and Vaccines 3.2 aImportant immune mechanisms against various infectious diseases i) Viral infections ii) Bacterial infections iii) Fungal infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	i) IgE- m	ediated (Type I) hypersensitivity: RIST and RAST	
Immunofluorescence, ELISA iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 3.2 Infectious Diseases and Vaccines 3.2.aImportant immune mechanisms against various infectious diseases i) Viral infections ii) Bacterial infections iii) Fungal infections iv) Parasitic infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization - Preformed antibodies and their disadvantages iii) Active immunization - Preformed antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency	ii) Antibo	dy-mediated(Type II) hypersensitivity : Agglutination	
 iv) Delayed type hypersensitivity(Type IV) : Tuberculin test 3.2 Infectious Diseases and Vaccines 3.2.aImportant immune mechanisms against various infectious diseases 	iii) Immu	ne complex-mediated(Type III) hypersensitivity:	
3.2 Infectious Diseases and Vaccines 07 3.2.almportant immune mechanisms against various infectious diseases 07 i) Viral infections ii) Bacterial infections iii) Fungal infections iii) Fungal infections iv) Parasitic infections 3.2 b. Vaccines i) Dessive immunization - Preformed antibodies and their disadvantages iii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 03 ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 3.3.bAcquired Immunodeficiency iv) Disease	Immunof	uorescence, ELISA	
3.2.aImportant immune mechanisms against various infectious diseases073.2.aImportant immune mechanisms against various infectious diseasesi) Viral infectionsii) Bacterial infectionsiii) Fungal infectionsiii) Fungal infectionsiv) Parasitic infections3.2 b. Vaccinesi) Passive immunization - Preformed antibodies and their disadvantagesii) Use of Chimera / humanized antibodiesiii) Active immunization-Whole organisms (attenuated vs. inactivatedex.Polio)iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines)v) DNA vaccines3.3 Immunodeficiency: Primary and acquired Immunodeficiency3.3.aPrimary immunodeficiencyi) B-cell- X-linked agammaglobulinemiaii) T-cell- Di George Syndromeiii) Lymphoid deficiency - Severe Combined Immunodeficiencyiv) Deficiency of myeloid lineage- Chronic Granulomatous Disease03	· •		
 3.2.almportant immune mechanisms against various infectious diseases i) Viral infections ii) Bacterial infections iii) Fungal infections iv) Parasitic infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	3.2 Infectious D	Diseases and Vaccines	07
 ii) Bacterial infections iii) Fungal infections iv) Parasitic infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iii) Lymphoid deficiency 	3.2.aImpo	ortant immune mechanisms against various infectious diseases	07
 iii) Fungal infections iv) Parasitic infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iii) Lymphoid deficiency 	i) Viral in	fections	
 iv) Parasitic infections 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	,		
 3.2 b. Vaccines i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	, 0		
 i) Passive immunization - Preformed antibodies and their disadvantages ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	<i>,</i>		
 ii) Use of Chimera / humanized antibodies iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 			
 iii) Active immunization-Whole organisms (attenuated vs. inactivated ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 		-	
ex.Polio) iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency	,		
 iv) Subunit Vaccines (Polysaccharide, toxoid and peptide vaccines) v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 		e immunization-Whole organisms (attenuated vs. inactivated	
 v) DNA vaccines 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	,		
 3.3 Immunodeficiency: Primary and acquired Immunodeficiency 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	<i>,</i>		
 3.3.aPrimary immunodeficiency i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 	/		
 i) B-cell- X-linked agammaglobulinemia ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 			03
 ii) T-cell- Di George Syndrome iii) Lymphoid deficiency - Severe Combined Immunodeficiency iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease 3.3.bAcquired Immunodeficiency 			
iii) Lymphoid deficiency - Severe Combined Immunodeficiencyiv) Deficiency of myeloid lineage- Chronic Granulomatous Disease3.3.bAcquired Immunodeficiency			
iv) Deficiency of myeloid lineage- Chronic Granulomatous Disease3.3.bAcquired Immunodeficiency	,		
3.3.bAcquired Immunodeficiency	• • •		
· ·			
i) Acquired Immunodeficiency Syndrome	-	-	
	i) Acquire	ed Immunodeficiency Syndrome	

UNIT – IV : Transplantation, Tumor Immunology, Tolerance and	(15L)
Autoimmunity	
4.1 Transplantation	04
i) Types of grafts	
ii) Tissue typing (serological and MLR)	
iii) Mechanisms of graft rejection	04
iv) Immunosuppresive therapy	04
v) Graft vs. host disease - bone marrow transplant	
4.2 Tumor Immunology	04
i) Tumour specific and associated antigens	
ii) Role of NK cells and macrophages	
iii) Tumour evasion of immune system	
iv)Cancer immunotherapy.	
4.3 Tolerance and Autoimmunity	03
4.3.a Establishment and maintenance of tolerance	
i) Mechanisms of central tolerance	
ii) Mechanisms of peripheral tolerance	
iii) Role of T regulatory cells	
iv) Immunology of pregnancy	
4.3 b. Autoimmunity	
i) Mechanisms for induction(Aetiology)	
ii) Organ specific diseases – ex. Myasthenia gravis, Graves disease	
iii) Systemic diseases – ex. Systemic Lupus Erythematosus, Multiple sclerosis	

SBSLSC 602: Developmental Biology II: This module explains the molecular and cellular aspects of and the important genes involved in early development. This module also looks at the applications of Developmental

Biology such as regeneration, ageing, cancer and assisted human reproduction

Course	Title	Lectures
Code		
SBSLSC	DEVELOPMENTAL BIOLOGY ANDNEUROBIOLOGY II	2.5 Credits
602		(60
		Lectures)
Unit 1: A	nimal and Plant development – Basic Cellular and Molecular Aspects	15 Lectures
1.1	Potency:	Р
	Totipotency (Nuclei)	1
		u
	25	ri

potency (Inner cell mass / Embryonic stem Cell) Multipotency (Adult stem cells – mesenchymal) Oligopotency (Monocytes)

2 lectures

r		1
1.2	Determination and Trans determination (Imaginal Discs)	2 lectures
1.3	Differentiation: Hematopoietic stem cells and Neural crest cells (migration and differentiation)	3 lectures
1.4 1.4a 1.4b	Molecular basis of development:- Genes in early development (with <i>Drosophila</i> as example) Determination of anterior- posterior and dorso-ventral axis Role of Maternal genes and zygotic (Gap genes, pair-rule genes, Segmentation genes and Homeotic genes) Beta globin gene – as an example of change in gene expression	3 lectures
1.5	Conserved nature of developmental genes (Evo- DevoperspectiveHox/Pax6 genes with respect to Drosophila)	2 lectures
1.6	Organogenesis of Eye OR Limb with references to inductive/ instructive signals, cytoplasmic determinants and gradients	1 lectures
1.7	Plant Development :- Role of Homeotic genes specifying parts of a flower Plant genome project (Arabidopsis/rice)	2 lectures
UNIT 2 :	Applications of Developmental Biology	15 lectures
2.1	Assisted human reproduction	2 lectures
2.2	 Regeneration a. Examples in animal world (vertebrates and invertebrates) b. Epimorphic (Salamander limb) and Morphallactic (Hydra) c. Compensatory regeneration (mammalian liver) d. Recent advances in stem cells and regenerative medicine (student assignment) 	3 lectures
2.3	Aging- Theories of Aging	2 lectures
2.4	Congenital abnormalities : sensitive periods during development and causes of congenitalnabnormalites with special references to the following a. Zika virus b. Alcohol c. Spina bifida	2 lectures
2.5	Cell cycle regulation - check points in cell cycle and role of cyclins and cdks	2 lecture
2.6	Apoptosis and its role in development	1 lecture

SBSLSC602:Neurobiology II: This module describes the structural and functional features of the various sensory and motor systems. It elaborates on some behavioural aspects such as sleep and memory. Examples of diseases that arise due to malfunction of the nervous system are described.

Unit 3: Sensory and motor systems		15 Lectures
3.1	Introduction to Human Sense organs: receptors, receptor mechanisms and pathways	1 lecture
3.1.a	Visual system: Vision - structure of the eye, retina, photoreceptors (rods and cones), photo transduction, binocular vision, visual pathway (flow chart only – LGN to visual cortex), light & dark adaptation, colour vision.	2 lectures
3.1.b	Auditory System: Structure of the ear, cochlea and organ of corti receptors 1 Mechanism of transduction, Auditory pathway: (MGN to audio cortex) Diagrammatic representation only.	2 lectures
3.1.c	Vestibular System: Structure of the vestibular labyrinth, maculae and cristae. Mechanism of transduction.	2 lectures
3.1.d	Chemosensory system: Olfactory and Gustatory receptors – structure.	2 lectures
3.1.e	Skin as sense organ: somatic receptors - Types of mechano- receptors, pain reception& Pain management (example analgesic effect by prostaglandin inhibition - aspirin)	2 lectures
3.2	Motor System:	
3.2.a	Organisation, Reflex Coordination(ascending and descending pathways diagrammatic representation only)	1 lecture
3.2.b	Role of cerebellum in motor co-ordination	1 lecture
3.2.c	Types of muscles, Molecular basis of Muscle contraction	1 lecture
3.2.d	Reflexes: Simple reflex arc, mono and poly-synaptic reflexes (one example of each)	1 lecture
UNIT 4 : Neurobiological basis of Behaviour:		

4.1.a	Sleep, Stages of sleep – REM and non REM	4 lectures
4.1.b	Short term memory and Long Term Memory (eg. Pathway in Aplysia and molecular events)	4 lectures
4.2	Neurobiological basis of Diseases:	7 lectures
4.2.a 4.2.b 4.2.c 4.2.d 4.2.e 4.2.f	Epilepsy Parkinson''s disease Schizophrenia- Relevance with regard to neurotransmitters Prions associated diseases Duchene''s muscular Dystrophy Alzheimer''s disease	

SBSLSC603: Biotechnology II: This course deals with details of applied aspects of Biology. Students will learn how fermentation technology, and plant / animal tissue culture are used for production of various pharmaceutically important compounds.

Course Code	Title	No. of Lectures	
SBSLSC603	Biotechnology and Genetic Engineering	2.5 credits 60	
Unit I Ferment	ation technology – Enzyme and Pharmaceuticals Production	15	
1.1. EnzymeTec	hnology		
1.1.a. Enzyme p	roduction ex. Amylase (bacterial &fungal)	03	
1.1.b. Immobiliz	ed Biocatalyst (method of immobilization, applications –	02	
biosenso	biosensors)		
1.2. Application	1.2. Application of fermentation technology in medicine:		
1.2.a.Production of antibiotics (Penicillin)		02	
1.2.b.Vitamins (Vitamin B12)		02	
1.2.c. Vaccines ((polio, HbsAg)	02	
1.2.d. Probiotics	, Neutraceuticals (one example of each)	02	
1.2.e. Biopharma	1.2.e. Biopharmaceuticals/Biomolecules (Insulin/IFN)		
UNIT II Tissue	Culture biotechnology	15	
2.1. Application			
Biopestic	cides – bacteria (B.thuringiensis),	04	
Virus (Pa	Virus (Polyhedrosis virus) and		
fungal (7	richoderma)		

2.2. Plant and Animal Tissue culture:	
2.2.a. Animal – Laboratory setup, Media, Basic techniques (Disaggregation of	
tissue and primary culture, maintenance of cell lines- see also Practical's)	05
2.2.b. Plant – Media, Basic techniques (callus and suspension culture,	
organogenesis, & somatic embryogenesis, Protoplast isolation and	04
fusion)	
2.2.c. Secondary metabolites from plant tissue culture	02

SBSLSC603: Genetic Engineering II: In this course students will learn about Applications of tools and techniques in Recombinant DNA technology. They will also learn about bioinformatics and Genomics. Students should be aware of vast scope of Genetic Engineering in transforming human lives by end of this course.

Unit III: Applications of recombinant DNA technology	15
3.1.Knockouts, Knock in, Knock down systems(Transgenic animals)	02
3.2. Transgenic plants:Bt cotton and weedicide resistant gene (any one example)	02
3.3. Xenopus oocyte as an expression system	
3.4. Giant Mouse (MMT promoter growth hormone fusion gene)	01
3.5. Drosophila (using p element mediated technique-enhancer trap)	01
3.6. Transformation of Plant Cells and Applications for Plant Genetic	01
Engineering:	01
3.6.a. Microinjection method	
3.6.b. Ti plasmid based Vectors (Binary vector and Cointegrativevector)	01
3.7. Applications in industry – Medical/pharmaceutical, agricultural	01
3.8.Gene therapy using any one example (Parkinson disease/SCID)	01
3.9.Ethical, Legal, and Social Implications of recombinant DNA technology	02
3.10. Consumer awareness (Labelling of GM food)	01
	01
Unit IV Tools in genetic engineering, Bioinformatics: Structural and	15
functional Genomics, Comparative Genomics	
4.1 Tools in genetic engineering	
4.1.a.Preparing genomic and cDNA libraries	02

4.1.b. Screening techniques (Nucleic acid hybridization methods,	01
immunological methods, gene inactivation)	
4.1.c.Microarrays	01
4.1.d. Brief overview of Cre-Lox system	01
4.2 Bioinformatics: Structural and functional Genomics	
4.2.a. Biological databases (formats: FASTA and GenBank)	01
4.2.b. Sequence annotation and comparison	02
4.2.c.Assigning Gene/protein Function Experimentally	01
4.2.d. Applied genomics: Drug designing and basic concept of Docking	02
4.3 Comparative Genomics	
4.3.a. Sequence alignment [Pairwise alignment (BLAST), Multiplealignement	
(Custalw)]	01
4.3.b. Phylogenetic trees (Rooted, Unrooted, Concept of Boot-strapping)	
4.3.c. Examples of Comparative Genomics Studies and Uses	02
	01

SBSLSC604: ENVIRONMENTAL BIOLOGY II: The paper deals with the human dimension of development and its effect on environment. It aims to provide adequate insight on management of natural resources. It introduces critical issues in environmental studies, both in an Indian and global perspective. The process of urbanization is explored with respect of consumption of resources; environmental consequences of urban transformation, waste disposal and pollution.

Course Code	Title	No. of Lectures	
SBSLSC604 ENV	IRONMENTALBIOLOGYII	2.5Credits (60 Lectures)	
<u>Unit I</u>		<u>15 Lectures</u>	
1.1.Environmental effects of urbanization: Availability of public/open and green spaces/sustainable use of urban space)		1	
1.2.Expansion problem of U	2		
0	1.3.Urban growth Challenges : Drinking water supply, pollution of surface water, generation of waste and waste management.		
	conmental degradation : (a) deforestation; (b) declining including soil desiccation); and (c) loss of biodiversity.	2	
1.5. Use of fresh water, rur	h water Resources: ground water, contamination of ground ral sewage management, freshwater wet lands, Rural	3	
River linking	Impact of cities on rural environment. g Project: Ken and Betwa river.* to be given as Student		
Assignmer	nt Ivironmental degradation on rural women	1	
1.7. Toxic and disposal,E-	solid waste management: Types of waste, solid waste waste and toxic waste trading, economics of recycling, lastic,Biocomposting and producing less waste.	4	
UNITII			
	d Environment: Classification of Energy resources, Types e and Non-renewable energy resources.	2	
	energy resources: Nuclear Power, Coal, Natural Gas, ing, Gas turbines and Biofuels.	3	
Ocean	Energy Resources: Geothermal, Tidal/Wave power,	4	
2.4. Meeting t	rgy, Inland Solar ponds, Energy efficient buildings the growing demands: Transportation, residential, and industrial needs.	3	
2.5. Meeting end	ergy efficiency: Household connected devices	1	
2.6. Concept of	carbon credit and carbon foot print	2	
	31		

Unit III	15 Lectures
3.1. Environmental Impact Analysis of a Development Project	
Risk management (EIA and Environment protection agency)	3 Lectures
perception of risk and gain, setting up standards	
Preparation of EIA report: For e.g.: Selection of a Land fill site.	5 Lectures
For e.g.: Post Chernobyl disaster.	
3.1a. Environmental Audit	
Definition, Types of Audit, Processes and decision making. Environmental	
Audit of an Industry Eg: Sugar factory	3Lectures
Environmental Audit of Solid waste Management Eg. Bangalore City	
3.2. Environmental Justice Movement:	2 Lectures
3.2a . Narmada BachaoAndolan and Project Affected people.	
3.2b. Chipko Movement, Hargila Army– Conservation efforts in Assam	2Lectures
3.2c. Bauxite Mining and Battle for Niyamgiri Hills.	15 Lootumos
3.2d . Plachimada struggle against destruction of groundwater	<u>15 Lectures</u>
	5lectures
<u>UnitIV</u>	
4.1. Sustainable Development	
4.1a. UN Agenda for sustainable development.	
4.1b. Sustainable development goals (Global goals),2030	
4.1c. War and Sustainability: Eg. Consequences of Vietnam war.Cost benefit analysis	4lectures
4.2. Safety, Health and Environment:	
4.2a. Safety and Health Hazards : Identification of potential safety and health	
hazards in industrial and development projects, reduction strategies, policies	
and legislation.	
Lessons after 30 years of Bhopal gas tragedy	
4.2b. International and national perspective, safety standards and	6Lectures
management systems, ISO 18000 (Occupational Health and Safety	oLectures
Management Systems)	
4.2c . Consumption Dynamics with special reference to Human:	
Land scape Ecology: Effects of changing landscape pattern on organisms,	
populations, communities and ecosystem processes. Use of GIS and	
Remote sensing technology in Land use mappingcase study of	
Bangalore city	

Bangalore city.

Practical Syllabus

Semester V

Course code: SBSLSCP05

[Practical Based on SBSLSC501, Credits-1.5, Lectures- 60]

Genetics

I) Experiments to be performed by students:

1. Extraction of chromosomal DNA from suitable sample (Chicken/goat/any other suitable source)

- 2. Streak plating of saliva on two different media
- 3. Viable count for enumeration of bacteria by –Bulk seed method
- 4. Viable count for enumeration of bacteria by Surface spread method

II) Demonstration experiments:

5. a) Study of *Drosophila* mutants from specimen / slides / photographs

b) Collection and observation of virgin *Drosophila* females for setting up of genetic crosses 6. Study of UV-Visible Spectrophotometer using DNA/ Protein from suitable sample, checking purity of sample.

Immunology

I)Experiments to be performed by students:

- 1. Study of ABO Blood groups and quantitative Coomb"s Test.
- 2. Study of Isohemagglutinin titer in blood.
- 3. Quantitative Widal Test.

II) Demonstration experiments:

- 4. a) Dissect and expose the lymphoid organs of rat / photograph
 - b) Study of Thymus, Spleen, and Lymph node tissue sections
 - c) Observation of Blast cells in bone marrow of any mammal from slides / photographs.

Course code: SBSLSCP502

[Practical Syllabus Based on SBSLSC502, Credits: 1.5, Lectures : 60

] Developmental Biology:

Animals:

1) Study of developmental stages of chick embryo- C, T

2) Cytochrome C- oxidase activity in a developing chick embryo. C, T

Demonstration experiments (Any two of the following):

1. Programmed cell death in limb bud using Janus Green B stain (in chick embryo).C, T,R

2. Alizarin stain to study limb development in chick embryo/ Regeneration of cartilage /

bone C, T,R

3. Acid and alkaline Phosphatase in Chick embryo.

Plants :

1) Effect of temperature on cell viability in pollen grains/yeast using Trypan blue/

acetocarmine .C, T, R

2) Root and shoot development in sections of a 2-day old plant embryo. I,C,T,R.

3) Study of plant embryo and determination of seed viability using NBT I,C,T,R.

Neurobiology:

1) Dissection& display of Nervous system in invertebrates – earthworm / cockroach or any other suitable animal C,T,R

2) Dissection & display of Nervous system in vertebrates – chick brain/goat brain or any other suitable system C,T,R

3) Study of chick embryo for identification of fore, mid & hind brain areas (Refer above

Developmental Biology Practical no.1)

5) Study of Permanent slides of: C,R

a) Medullary nerve fibre b) TS of Spinal cord c) Mammalian retina

d) Electron micrographs of neural tissue

Demonstration Experiments (Any two of the following):

a)Study of the Nervous system of Sepia with special reference to Giant axon and stellate ganglia T,C,R.

b)Assignment - Bird songs and neurophysiology involved (as a group practical)

c)Understanding the principle and basic interpretation of brain imaging tests like PET

(Positron Emission Tomography) and MRI (Magnetic Resonance Imaging)

Coursecode: SBSLSC P503

[Practical Based on SBSLSC503,Credits-1.5,Lectures-60]

1. Extraction and purification (salting out method) of enzyme: (Amylase from sweet-potato /

salivary amylase/egg white lysozyme or any other convenient enzyme)

2. Determination of - i) enzyme activity ii) specific activity.

3. Effect of inhibitors on Km of amylase/any other convenient enzyme.

4. Agarose gel electrophoresis of the extracted amylase or serum

5. Non-denaturing Poly Acrylamide Gel Electrophoresis of *E.coli* extract / Serum proteins / Saliva / Egg white any other suitable sample

6. Alcohol and sugar tolerance in yeast and strain improvement studies by exposing yeast to UV rays.

7. Gene Cloning strategy (Craft)

8. Sugar Fermentation rate in presence of different substrate/pH/temperature measure accumulated CO2 with under different conditions. (Demonstration / group experiment)

Coursecode: SBSLSC P504

[Practicals Based on SBSLSC504,Credits-1.5,Lectures- 60]

<u>Note:</u>I–Instrumentation,C-Conceptual understanding,T–Technicalskill,R–Relevance to daily life.

1. Plankton collection/Plankton identification and quantification from

river/Lake water samples (CTR)

2a).Vegetation studies by line,quadrates and belt transect methods and their

analysis.(CT)

2b)Using a Simulated data perform the following:-Classify the data and calculate ecological indices; Dominance index, Shannon-Wiener Index, Similarity Index, Diversity index. Evaluate and interpret each of the index values. **(CT)** (Any two examples)

3. Preparation of media for microbial culture, Isolation and culturing of microbes from

Soil/water samples (Fungal/Bacterial/Algal organism).	(CTR)
4. Study of fecundity from the given sample of freshwater/marine fish	(CTR)
5. Isolation and culturing of Rhizobium from the given sample.(CTR)	
6.Analysis of soils for pH, moisture, soil types.	(CTR)

7. Water analysis for physicochemical characteristics:(any three) (CTR)

- Salinity/Acidity/Alkalinity/BOD/DO/COD/Copper
- 8. Study of effect of a metal toxicity on the heart beat of Daphnia and statistical analysis of the same T Test/LC 50 (CTR)
- 9. A visit to Mahim Nature Park/ Vikhroli Mangroves(CTR)

Practical Syllabus Semester VI

Course code: SBSLSC P601

[Practical Based on SBSLSC601, Credits-1.5, Lectures-60]

Genetics

I) Experiments to be performed by students:

1. Giant Chromosome preparation (Drosophila / Chironomus)

2. Estimation of bacteriophage titre by plaque assay

3. Effect of UV light on microorganisms - Determination of percent viability

of an E. coli culture after U.V. exposure- in the absence of light repair

4. Isolation of antibiotic resistant / auxotrophic mutants using Replica plate technique.

II) Demonstration experiments:

5. Extraction of plasmid DNA, restriction enzyme digestion and visualization by agarose gel electrophoresis.

Immunology

I) Experiments to be performed by students:

6. Ouchterlony test for Immunodiffusion – (Qualitative).

7. Mancini test - Single Radial Immunodiffusion (Qualitative)

8. Agarose slide gel electrophoresis of Serum.

II) Demonstration experiments:

9. Separation of Mononuclear cells using a gradient and the determination

of viable count of the same

10. SDS- PAGE for separation of Ig Gsubfraction

11. Qualitative ELISA using albumin

Course Code: SBSMB P602

[Practical Syllabus Based on SBSLSC602 Credits: 1.5, Lectures: 60]

Plant Developmental Biology

1. Effect of boron / calcium on pollen tube germination in Vinca rose or any other suitable sample I, C.T, R

2. Role of GA in seed germination. C, T

3. Demonstration experiments: Plant Tissue Culture: Initiation of plant tissue culture from germinated chick pea/any other suitable source: (project to be performed in groups of 4-5 students) C, T, R

Animal Developmental Biology

4. Live observations of Developmental stages of. *C.elegans/Dictyotelium/Drosophila/zebrafish* Demonstration experiments: C, T (Any two of the following):

5. Imaginal discs of *Drosophila*

6. Regeneration in earthworm / any other suitable system / hydra (using permanent slide / photographs)

7. Animal Cell Culture /Assays: Cell proliferation assay/ Cell migration assay/ Cell adhesion assay

Neurobiology

1. Differential staining of white and grey matter of vertebrate brain.

2 Temporary mounts of any three of the following: C, T, R

a) Cornea of prawn. b) Statocyst of prawn. c) Columella of bird. d) Striated / smooth muscle fibre.

e) Methylene blue staining of earthworm nerve cord or any other suitable nerve cord or brain to observe organization of neuronal cell bodies in invertebrates

f) Olfactory & gustatory sensillaeg) Histological staining of neuronal tissue using

Heamotoxilin-Eosin staining or Nessil"s staining.

3) Making clay model of vertebrate brain and cranial nerves. C,T,R

Demonstration Experiments - C, T, R

1. Stroop test.

- 2. Olfactory /Gustatory Behavioral study: Snail / Earthworm / insect larvae
- 3. Associative conditioning
- 4. Knee-jerk and pupillary reflex.
- 5. Testing for locating the Blind Spot in the retina

Coursecode: SBSLSC P603

[Practicals Based on SBSLSC603,Credits-1.5,Lectures-60]

- 1. Thin layer chromatography of lipids/plant alkaloids/any other suitable extract
- 2. Bioassay of antibiotic / plant extract / for anti-bacterial activity or B-12 assay.
- 3. Assay of fermentation product / Substrate Estimation of (a) alcohol/Acetic/lactic acid (b)
- 4. Extraction of plasmid DNA& Agarose Gel Electrophoresis of plasmid DNA/Restriction Digest with costing of the experiment.
- 5. Immobilization of Enzyme (Amylase/any other convenient enzyme) using hen egg-white or alginate method and assay its activity.
- 6. Quality control: Probiotics or Vaccine
- 7. Bioinformatics :
 - i) Design primers (Forward and reverse primers with matching Tm) for amplifying
 - "x" gene of "y" species. (They will search for sequence, and design primers)
 - ii) Manual annotation of DNA sequence: Prokaryotic/Eukaryotic

iii) Sequence alignment – pair wise (For Match Score: Specify values for match, mismatch and gap penalty)

iv) Construction of Cladogram/Phylogram with TimeLine

Open-endedprojects:(Anyoneofthefollowing, along with its costing)

- 1. Home-Wine production / Home-Vinegar production from any convenient source & assay for fermentation products
- 2. Culturing & biomass estimation of mushroom/ Spirulina /chlorella by cell count/dry weight and estimation of percentage total protein.
- 3. Plant tissue culture: i) Callus production ii) Preparation of protoplasts and estimate viability by trypan blue staining
- 4. Animal tissue culture: Tissue dissociation by trypsinization technique and to estimate the viability of cells in physiological saline/MEM at 0 hrs and 2 hrs
- 5. Growth curve of E coli (DH5 alpha) and preparation of competent cell for transformation experiment.
- 6. Finger Printing technique using electrophoresis of protein/DNA digest 38
- 7. SDS PAGE with suitable Protein sample for Comparison with Experiment no.3 above.
- 8. Agarose Gel Electrophoresis of extracted DNA samples with & without Molecular marker ladder

 Genomic DNA extraction, purification and estimation by UV spectroscopy Development of cost effective method using Liquid Soap, Common Salt and Alcohol or any convenient variation

Course Code: SBSLSC P604

[Practical Syllabus Based on SBSLSC604SemesterVICredits:1.5, Lectures: 60]

Note: I-Instrumentation, C-Conceptualunderstanding, T-Technicalskill, R-Relevance to daily life

1. EC, conductivity, N/P/K/Sulphates/Na/Ca. /EstimationofCo2+and
Ni2+by colorimetry/spectrophotometry/ Water analysis for physico-
chemical
characteristics/EstimationofHeavymetalinvarioussamplesbytitrimetryor
spectrometry/Potability of the given drinking water sample by MPN.
(Any three of the above) (CTR)
2.Estimation of Co2+ and Ni2+/Pb by colorimetry / spectrophotometry (any one) (CTR)

3.Remote Sensing and GIS: Principles of Remote Sensing and its application of Environmental Science. Application of GIS in Environmental Management (Use photographs and models). (CTR)
4a).Collection and Interpretation of weather data/Climatology of Mumbai city (Satellite images and statistical analysis of weather data).
5. Statistical methods for analysis of environmental data: diversity and similarity indices, for the given data. Use of EXCEL or SPSS (CT)
4b) Study of Leaf margins as climate indicators.

7. Estimation of stomatal index (2 different leaf types and two different micro-climatic conditions e.g. Sun loving, shade loving)/ Chlorophyll content. (CTR)

8. Field visit to river/lake and waste water treatment plants.
 9. A visit to Sanjay Gandhi National Park. Identification of local plant species as: Ecological indicators, exotic species

Environmental Project (compulsory) (CTR)

*The film documentary/Video making for project should notbemore than 10 min duration. For Example:food sustainability, environmental justice and climate change, Sustainable future.

Project Submission and viva

SemesterV

Text Books and References

SBSLSC 501 References books for Unit I and II Genetics

1. Principles of Genetics by Snustad and Simmons 4thedn. John Wiley and sons 2006.

2. I Genetics; A Molecular approach by Peter Russel 2ndedn. Pearson 2006.

3. I Genetics; A Mendelian approach by Peter Russel 2ndedn. Pearson 2006.

4. Introduction to Genetic Analysis by Griffiths et al 8thedn Freeman and co. 2005.

5. Genes IX by Benjamin Lewin; Jones and Bartlett publishers, 2008.

6. Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M. Twyman 7thedn.,

Blackwell publication, asianedn Oxford publishers 2007.

7. Concepts of Genetics W. S. Klug and M. R. Cummings 7thedn. Pearson 2003.

8. Concepts of Genetics W. S. Klug, M. R. Cummings, C. A. Spencer 8thedn. Pearson 2006.

9. Human Molecular Genetics by Tom Strachan and Andrew Read, 3rdedn. Garland Science pub. 2004.

10. Principles of Genetics by R. Tamarin 7thedn 2002

References books for Unit III and IV Immunology

11. Immunology 5thedn. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby 2003.

12. Immunology: The immune system in health and disease 6thedn. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik Garland Science Pub. 2005.

13. Cellular and Molecular Immunology, 2 ndedn. A. K. Abbas, A. H. Litchman, 5 thedn 2000.

14. Basic Immunology: Functions and disorders of the immune system, 2ndedn. A. K. Abbas, A. H. Litchman, 2ndedn 2004.

15. Roitt"s Essential Immunology 11thedn. Blackwell publication 2006.

16. Immunology 7thInternationaledn. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey Elsevier publication, 2006.

17. An Introduction to Immunology C. V. RaoNarossa Publishers 2002. USLSC502:

SBSLSC50

2

Reference books for UNIT I and II Developmental Biology

1. Instant Lecture Notes- Developmental Biology R.M.Twyman, Viva Books Private

Limited, New Delhi, Latest Edition (First Edition – 2001)

2. Developmental Biology T.Subramaniam, Narosa publishing Hopuse, Mumbai, Latest Edition (First Edition- 2002)

3. Principles of Development L. Wolpert, R. Beddington, J. Brockes, T. Jesell and P. Lawrencel 23 Oxford University Press.

4. Developmental Biology. W.A. Miller Springer – Verlag.

5.. Molecular Biology 3rd Ed., H.Lodish, D.Baltimore, A.Berk, S.L. Zipurski, P.Matsudaira and

J. Darnell. Scientific American Book, W.H. Freeman, N.Y.

6. Molecular Biology of the Cell 3rd Edition. B. Alberts, D. Bray, J.Lewis, M. Raff, K. Roberts and J.D.Watson. Garland Publishing Inc., N T and London.

7. 5. Plant Cell and Tissue Culture I. Vasil and T.A. Thorpe. Kluwer Academic Publishers.

8. Practical Zoology 2ndEdition. K.C. Ghone and B. Manna. New Central Book Agency Publishers.

Developmental Biology 4thedition. S.F. Gilbert. Sinauer Associates Inc. Publishers.
 Pollen Analysis 2ndedition. P.D.Moore, J.A.Webb and M.E. Collinson Blackwell Scientific

Publishers.

11. Pollen Biology – A laboratory manual (1992) K.R. Shivanna and N.S. Rangaswamy, Narosa Publishing, Calcutta.

12. Developmental Biology 2ndedition, L.W.Browder, Saunders College Publishing Co.

13. An Introduction to Embryology 5thEd B. I. Ballinsky" Saunders, College Publishing Co.

14. Developmental Biology – Patterns, Problems and Principles. J. W. Saunders. J. R. MacMillan Publishing Co.,

15. An Introduction To the Embryology of Angiosperms. P. Maheshwari. 16. An Atlas Of Descriptive Embryo 24 logy 2nded.W.W.Mathews. MacMillan Publishing Co.

16. Essential Developmental Biology – A Practical Approach Ed C.D. Stern and P.W.H. Holland. Oxford University Press UNIT III and IV – Neurobiology (Latest Editions Recommended).

Reference books for UNIT III and IV Neurobiology

17. Neuroscience: Exploting the brain M.F.Baer, B.W.Connors&M.A.Paradiso, William & Wilkins, Baltimore, Latest Edition (First Edition1996)

18. Neurobiology 3rdedition G.M. Shepherd Oxford University Press.

18. Principles Of Neural Science. E.R.Kandel, J.H.Schwartz and T.M. Jessel. Prentice Hall Internation.

19. Instant Notes – Neurosciences, A.Longstaff Viva Books Pvt Ltd., New Delhi, 2002

20. Text Book Of Medical Physiology A.C.Guyton and J.E.Hall Saunders College Publishers.

21. Elements Of Molecular Neurobiology C.U.M. Smith J Wiley and Sons Publishers, N.Y.

22. An Introduction to Molecular Neurobiology Z.W. Hall Sinauer Associates Inc. Publishers.

23. Ion Channels – Molecules in Action D. J. Aidley and P.R. Stanfield. Cembridge University Press.

24. Comparative Neurobiology J. P. Mill Edward Arnold Publishers.

25. Physiology Of the Nervous Systems D Ottoson, McMillan Press 25

SBSLSC

503

Reference books for Unit I to IV

Biotechnology and Genetic Engineering

1. Principles of gene manipulation and Genomics by Primrose and Twyman, 7thedition, Blackwell publishing (2006)

2. Molecular Techniques in Biochemistry and Biotechnology by S Shrivastava (2010) Pub. New central book Agency (P) Ltd

3. Molecular Biology by Robert Weaver, second edition Pub Mc Graw Hill (2003)

4. Text book of cell and Molecular Biology by Ajoy Paul Pub Books and Allied (P) Ltd. Second edition (2009)

5. Cell and molecular biology by sp Vyas and Mehta (2011) CBS pub and DistPvt Ltd.

6. Industrial Microbiology. L.E.Casida (2003) New Age International (P) Ltd.

7. Industrial Microbiology. Prescott And Dunn's (2004) Chapman & Hall.

8. Industrial Microbiology. A H PATEL (2005) Macmillan India.

9. Principals of Fermentation Technology, P.F Stanbury, Whitaker and Hall (2004) Fourth Edition

SBSLSC50

Environmental Biology Reference Books for Unit I to IV

1. Misra and Pandey (2011), "Essential environmental studies ",", Ane Books

2. Martens (1998),"Health and climate change ", Earth Scan

3. Saxena (1998), "Environmental Analysis of soil and air", Agrobotanica

4. Chakraborti (2005),"Energy efficient and environment friendly technologies for rural development ", Allied Publishers

5. Dash M C (2004) "Ecology, chemistry and Management of environmental Pollution ", Mac Millan India

6. Nayak ,Amar(2006) "Sustainable sewage water Management ",Mc Millan India

7. Dolder, Willi (2009), "Endangered animals, Parragon

8. Gupta P K (2000)," Methods in environmental Analysis ", Agrobio (India)

9. Bhargava Meena (2005) Frontiers of Environment : Issues in Medieval and Early Modern

India. Oxford University Press

10. Kapur (2010) "Vulnerable India", SAGE

11. Jacob, Miriam(2004)," Silent Invaders", Orient Longman

13. Subramnyam (2006),"Ecology", 2nd ed.Narosa

14. Dilip Kumar, Rajvaidya (2004)," Environmental Biotechnology", APH

15. Sharma and Khan (2004)," Ozone Depletion and Environmental Impacts", Pointer publishers

16.State of India"s Environment 2018.A Down To Earth Annual.

SemesterVI

Text Books and References SBSLSC 601 **References books for Unit I and II Genetics**

Principles of Genetics by Snustad and Simmons 4thedn. John Wiley and sons 2006.
 I Genetics; A Molecular approach by Peter Russel 2ndedn. Pearson 2006.
 I Genetics; A Mendelian approach by Peter Russel 2ndedn. Pearson 2006.

4. Introduction to Genetic Analysis by Griffiths et al 8thedn Freeman and co. 2005.

5. Genes IX by Benjamin Lewin; Jones and Bartlett publishers, 2008.

6. Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M. Twyman 7thedn.,

Blackwell publication, asianedn Oxford publishers 2007.

7. Concepts of Genetics W. S. Klug and M. R. Cummings 7thedn. Pearson 2003.

8. Concepts of Genetics W. S. Klug, M. R. Cummings, C. A. Spencer 8thedn. Pearson 2006.

9. Human Molecular Genetics by Tom Strachan and Andrew Read, 3rdedn. Garland Science pub. 2004.

10. Principles of Genetics by R. Tamarin 7thedn 2002

References books for Unit III and IV Immunology

11. Immunology 5thedn. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby 2003.

12. Immunology: The immune system in health and disease 6thedn. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik Garland Science Pub. 2005.

13. Cellular and Molecular Immunology, 2 ndedn. A. K. Abbas, A. H. Litchman, 5 thedn 2000.

14. Basic Immunology: Functions and disorders of the immune system, 2ndedn. A. K. Abbas, A. H. Litchman, 2ndedn 2004.

15. Roitt"s Essential Immunology 11thedn. Blackwell publication 2006.

16. Immunology 7thInternationaledn. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey Elsevier publication, 2006.

17. An Introduction to Immunology C. V. RaoNarossa Publishers 2002. USLSC502:

SBSLSC 602 Reference books for UNIT I and II Developmental Biology

1. Instant Lecture Notes- Developmental Biology R.M.Twyman, Viva Books Private Limited, New Delhi, Latest Edition (First Edition – 2001)

2. Developmental Biology T.Subramaniam, Narosa publishing Hopuse, Mumbai, Latest Edition (First Edition- 2002)

3. Principles of Development L. Wolpert, R. Beddington, J. Brockes, T. Jesell and P. Lawrencel 23 Oxford University Press.

4. Developmental Biology. W.A. Miller Springer - Verlag.

5.. Molecular Biology 3rd Ed., H.Lodish, D.Baltimore, A.Berk, S.L. Zipurski, P.Matsudaira and J. Darnell. Scientific American Book, W.H. Freeman, N.Y.

6. Molecular Biology of the Cell 3rd Edition. B. Alberts, D. Bray, J.Lewis, M. Raff, K. Roberts and J.D.Watson. Garland Publishing Inc., N T and London.

7. 5. Plant Cell and Tissue Culture I. Vasil and T.A. Thorpe. Kluwer Academic Publishers.

8. Practical Zoology 2ndEdition. K.C. Ghone and B. Manna. New Central Book Agency Publishers.

9. Developmental Biology 4thedition. S.F. Gilbert. Sinauer Associates Inc. Publishers.

10. Pollen Analysis 2ndedition. P.D.Moore, J.A.Webb and M.E. Collinson Blackwell Scientific Publishers.

11. Pollen Biology – A laboratory manual (1992) K.R. Shivanna and N.S. Rangaswamy, Narosa Publishing, Calcutta.

12. Developmental Biology 2ndedition, L.W.Browder, Saunders College Publishing Co.

13. An Introduction to Embryology 5thEd B. I. Ballinsky" Saunders, College Publishing Co.

14. Developmental Biology – Patterns, Problems and Principles. J. W. Saunders. J. R. MacMillan Publishing Co.,

15. An Introduction To the Embryology of Angiosperms. P. Maheshwari. 16. An Atlas Of Descriptive Embryo 24 logy 2nded.W.W.Mathews. MacMillan Publishing Co.

16. Essential Developmental Biology – A Practical Approach Ed C.D. Stern and P.W.H. Holland. Oxford University Press UNIT III and IV – Neurobiology (Latest Editions Recommended).

Reference books for UNIT III and IV Neurobiology

17. Neuroscience: Exploting the brain M.F.Baer, B.W.Connors&M.A.Paradiso, William & Wilkins, Baltimore, Latest Edition (First Edition1996)

18. Neurobiology 3rdedition G.M. Shepherd Oxford University Press.

18. Principles Of Neural Science. E.R.Kandel, J.H.Schwartz and T.M. Jessel. Prentice Hall Internation.

19. Instant Notes - Neurosciences, A.Longstaff Viva Books Pvt Ltd., New Delhi, 2002

20. Text Book Of Medical Physiology A.C.Guyton and J.E.Hall Saunders College Publishers.

21. Elements Of Molecular Neurobiology C.U.M. Smith J Wiley and Sons Publishers, N.Y.

22. An Introduction to Molecular Neurobiology Z.W. Hall Sinauer Associates Inc. Publishers.

23. Ion Channels – Molecules in Action D. J. Aidley and P.R. Stanfield. Cembridge University Press.

24. Comparative Neurobiology J. P. Mill Edward Arnold Publishers.

25. Physiology Of the Nervous Systems D Ottoson, McMillan Press 25

SBSLSC

603

Reference books for Unit I to IV

Biotechnology and Genetic Engineering

1. Principles of gene manipulation and Genomics by Primrose and Twyman, 7thedition, Blackwell publishing (2006)

2. Molecular Techniques in Biochemistry and Biotechnology by S Shrivastava (2010) Pub. New central book Agency (P) Ltd

3. Molecular Biology by Robert Weaver, second edition Pub Mc Graw Hill (2003)

4. Text book of cell and Molecular Biology by Ajoy Paul Pub Books and Allied (P) Ltd. Second edition (2009)

5. Cell and molecular biology by sp Vyas and Mehta (2011) CBS pub and DistPvt Ltd.

6. Industrial Microbiology. L.E.Casida (2003) New Age International (P) Ltd.

7. Industrial Microbiology. Prescott And Dunn's (2004) Chapman & Hall.

8. Industrial Microbiology. A H PATEL (2005) Macmillan India.

9. Principals of Fermentation Technology, P.F Stanbury, Whitaker and Hall (2004) Fourth Edition

SBSLSC 604 **Reference Books for Unit I to IV**

1. Misraand Pandey (2011), "Essential environmental studies,,", Ane Books

2.Martens(1998),"Healthandclimatechange", EarthScan

3.Saxena(1998), "EnvironmentalAnalysisofsoiland air", Agrobotanica

4. Chakraborti (2005), "Energy efficient and environment friendly technologies forrural development", AlliedPublishers

5.Cunningham W and Cunnigham MA., Environmental science: a global concern, 2017, 14th Edition, McGraw Hill Education.

6. DashMC(2004)"Ecology, chemistryand Management of environmental Pollution", Mac MillanIndia

6.Nayak, Amar(2006)" Sustainablesewagewater Management", McMillan India

7.Dolder, Willi (2009), "Endangeredanimals, Parragon

8.GuptaPK(2000),"MethodsinenvironmentalAnalysis", Agrobio(India)

9.Sharan Awadhendra (2014)"In the city out of place, Nuisance ,Pollution and Dwelling in Delhi" 10.Kapur(2010)"VulnerableIndia",SAGE

11.Jacob, Miriam (2004)," SilentInvaders", OrientLongman

12.Subramnyam(2006),"Ecology",2nded.Narosa14.DilipKumar,Rajvaidya(2004),"Environmental Biotechnology", APH

13.Sharma andKhan(2004), "OzoneDepletionandEnvironmentalImpacts", Pointerpublisher 14. State of India"s Environment 2018. A Down To Earth. Fortnightly on politics of development, environment and health.

15. Walker, Gordon (2012)"Environmental Justice: Concepts, Evidence & politics" Routledge, Publishers 45

16. Gadgil, Madhav; Guha Ramachandra (2012) This Fissured Land An Ecological History of India Oxford University Press

17. Shah Mihir; Vijayshankar: P. S (2016)Water: Growing Understanding, Emerging Perspectives. Orient BlackSwan,
18. Garg Santosh Kumar & Garg Ranjini (2018) Environmental Studies and Green Technologies.Khanna Publisher