

SOPHIA COLLEGE FOR WOMEN (EMPOWERED AUTONOMOUS)

Affiliated to the University of Mumbai

Programme: Science

Statistics (Minor)

Syllabus for the Academic Year 2024-2025 based on the National Education Policy 2020

DEPARTMENT OF MATHEMATICS & STATISTICS

COURSE DETAILS FOR MINOR:

	SEMESTER 3	SEMESTER 4		
TITLE	STATISTICAL METHODS-1		STATISTICAL METHODS -2	
TYPE OF	Minor		Minor	
COURSE				
DSC				
CREDITS	4		4	

Preamble:

In the current context, possessing a solid understanding of various statistical concepts has become crucial. Statisticians are constantly in demand in the software, research, industry, and education sectors. The various statistics course syllabi have been designed so that students can become competent in an extensive spectrum of statistical processes at the completion of each course. These techniques can be applied to further research while also applying statistical tools appropriately to a diversity of data sets in order to derive some reliable results. Different environments require for different applications of statistics. Quantitative results in various areas of research are referred to as statistics. The study of statistics is an important domain of knowledge that focuses on various techniques of collecting, presenting, analyzing, and interpreting data. It is the science of data-driven learning. The subject provides tools to facilitate decision-making in uncertain situations. Decisionmaking can be rendered simpler by statistics, which measures uncertainties and chance. In addition to building the foundations for the development of essentially every contemporary field, its descriptive and inferential responsibilities offer a variety of unconventional career possibilities, from financial analysis to sports analysis. The main goal of the curriculum is to get students ready to enter into a promising professional life even after graduation. Large volumes of data have been processed by computers over the past 20 years, and more complex methods of statistical analysis may be applied efficiently resulting in reliable results. Therefore, a number of fields, including agriculture, business, management, economics, finance, insurance, education, biotechnology, and medical science, among others, rely heavily on statistical techniques and procedures. Statistics can be divided into three broad categories, (1) descriptive statistics, which summarizes and describes data; (2) inferential statistics, that arrives at decisions about the population based on sample; and (3) operations research, that utilizes statistics in the fields of industrial and management.

PROGRAMME OBJECTIVES

PO 1	To teach students methods for effective data collection, organization, and summarization skills as well as analysis and interpretation approaches.
PO 2	Introduce students to regression analysis to model relationships between variables and make predictions.
PO 3	To provide students with a understanding of fundamental concepts - probability, random variables, and distributions.
PO 4	Encourage students to use statistical techniques to solve practical issues and assess the reliability of statistical findings in order to develop their critical thinking abilities.

	PROGRAMME SPECIFIC OUTCOMES
PSO 1	The learner will be able to understand the fundamentals of statistics, including the key concepts of probability theory, probability distributions, distribution theory, statistical inference, significance testing, and operations research.
PSO 2	The learner will be able apply the concepts taught in the practicals and will be able to analyse and evaluate data as well as come to reliable conclusions. This will prepare pupils for real- world situations.
PSO 3	Apply statistical, operations research, probability theory, time series, designs of experiments, and other principles to real-world issues
PSO 4	Know how statistics are used in fields like finance, sociology, science, and economics, among others.

Programme: S Statistics Mir	Science 1or		Semester -	- 3		
Course Title: STATISTICAL METHODS-1 Course Code:				de: SST/	A233MN	
COURSE OB	JECTIVES:					
1. To under	stand the co	ncepts of probability and pro	bability distri	ibution		
2. To fit an	appropriate d	listribution to data sets				
COURSE OUT	COMES:					
Through this p	aper, the lea	arner will be able to	_			
1. Differenti	ate between	random and non-random ex	periments			
2. Compute	the probabil	Ities of events		1: - 4 - : 1 4: -		_
3. Understa	ind the conce	ept of a random variable, the	probability c	IISTRIDUTIO	n and its properties	3
4. Apply sta		te probability distributions ba	ased on real	me		
	s Nook (1 Loct	ture is 60 minutes)			2	
Total number	of Hours in	a Somostor		3	2	
Credits					2	
Evaluation Sv	stem	Semester End	2 Hours		50 marks	
	otom	Examination	2110410			
		Internal Assessment			50 marks	
	1.1	Elementary Probability The	ory :			
		Trial random experiment s	ample point	and		
UNIT 1		sample space			15 hours	
		Definition of an event. Oper	ation of over	ato		
		Definition of an event. Operation of events,				
		mutually exclusive and exha	austive even	ts.		
		Classical (Mathematical) an	d Empirical			
		definitions of Probability and	d their			
		properties.				
		Independence of events, pairwise and				
		mutual independence for three event				
		Conditional probability				
		Conditional probability.				
1.2		Theorems on Addition and Multiplication of				
		probabilities. Baves theorem and its				
applicatio		applications.				
	1.3	Discrete random variable ar	nd properties	<u>s of</u>		
		its probability distribution				

			7
		Random variable. Definition and properties	
		of probability distribution and cumulative	
		distribution function of discrete random	
		variable.	
		Raw and Central moments (definition only)	
		and their relationship.(upto order four).	
		Concepts of Skewness and Kurtosis and	
		their uses.	
		Concept of Generating function, Moment	
		Generating function, Cumulant Generating	
		function, Probability generating function -	
		M.G.F. and C.G.F- Definition & Properties.	
		Expectation and Variance of a random	
		variable. Theorems on Expectation &	
		Variance.	
	1.4	Joint probability mass function of two	
		discrete random variables, Marginal and	
		conditional distributions. Covariance and	
		Coefficient of Correlation. Independence of	
		two random variables.	
	2.1	Standard Discrete Distributions	
UNIT 2		Discrete Uniform Distribution– Definition,	15 hours
		derivation of their mean and variance.	
	2.2	Bernoulli Distribution, Binomial distribution	•
		– Definition and properties, derivation of	
		their mean and variance .	
	2.3	Poisson distribution – Definition and	
		properties, derivation of their mean and	
		variance. Poisson approximation to	
		Binomial distribution(statement only).	
	2.4	Hyper geometric distribution- Derivation of	
		their mean and variance, Binomial	
		approximation to hyper deometric	
	I		

2023-2024 STATISTICS

distribution(statement only).

			1	
	2.5	Fitting of distribution.	l	

REFERENCES

- Medhi J. : Statistical Methods, An Introductory Text, Second Edition, New Age International Ltd.
- Agarwal B.L. : Basic Statistics, New Age International Ltd.
- Spiegel M.R. : Theory and Problems of Statistics, Schaum's Publications series. Tata McGraw-Hill.
- Kothari C.R. : Research Methodology, Wiley Eastern Limited.
- David S. : Elementary Probability, Cambridge University Press.
- Hoel P.G. : Introduction to Mathematical Statistics, Asia Publishing House.
- Hogg R.V. and Tannis E.P. : Probability and Statistical Inference, McMillan Publishing Co. Inc.
- Pitan Jim : Probability, Narosa Publishing House.
- Goon A.M., Gupta M.K., Dasgupta B. : Fundamentals of Statistics, Volume II : The World Press Private Limited, Calcutta.

PRACTICAL Course Title METHODS-1	e: STATISTICAL	Course Code:	SSTA233MNP			
 <u>COURSE OUTCOMES</u>: Through this paper, the learner will be able to Differentiate between random and non-random experiments Compute the probabilities of events Understand the concept of a random variable, the probability distribution and its properties Apply standard discrete probability distributions based on real life 						
Lectures per week (1 Lectu	ıre is 60 minutes)	2				
Total number of Hours in	a Semester		30			
Credits			1			
Evaluation System	Semester End Examination	2 Hours	50 marks			
	Internal Assessment					
1 Probability	1 Probability					

2	Theorems on Probability
3.	Discrete Random Variable
4	Binomial distribution
5	Poisson distribution
6	Hyper geometric distribution
7	Practicals based on the above topics using Statistical software

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration

Programme: Science			Semester – 4			
Statistics Minor						
Course Title: STATISTICAL METHODS-2 Course Code: SS				e: SSTA244MN		
COURSE OBJ	COURSE OBJECTIVES:					
1. I o introd	uce two maii	n branch of Statistical Inferer	ntial theory –	Estimation & Testing of		
2 To under	hypothesis 2 To understand the importance of Boll curve and other distributions used in data analysis					
3. To asses	s population	characteristics on the basis	of sample us	sing estimation and		
hypothes	is testing the	eory.	•	5		
COURSE OUT	<u>COMES</u> :					
Through this p	aper, the lea	arner will be able to	vo diatributio	a function for a continuous		
random v	probability u /ariable					
2. Apply sta	andard contin	nuous probability distributions	s to different			
situations	6					
3. Distingui	sh between p	point estimation and interval	estimation			
4. Flame a	nypolnesis a	and validate the hypothesis.		2		
Total number of	of Hours in a	Semester	30			
Credits			2			
Evaluation Syst	tem	Semester End Examination	2 Hours	50 marks		
		Internal Assessment		50 marks		
	1.1	Continuous random variable a	<u>nd Standard</u>			
UNIT 1		Continuous Distributions:		15 hours		
		Concept of Continuous random	n variable and			
		properties of its probability dis	stribution			
		Probability density function ar	nd cumulative			
		distribution function - Propert	ies and its			
		graphical representation.				
	Expectation of a random variable and its					
		properties. Measures of location, dispersion,				
		Raw and central moments, ske	wness and			
		kurtosis, M.G.F. and C.G.F- D	efinition &			
		Properties.				
	1.2	Rectangular Distribution- Deri	vations of me	an,		
		median, variance. M.G.F, C.G	.F			

			1
		Exponential (location scale parameter) -	
		Derivations of mean, median and variance,	
		memory less property of exponential	
		distribution, M.G.F, C.G.F	
	1.3	Normal Distribution ,	
		Gaussian (Normal) distribution- Properties	
		of Normal distribution, Normal	
		approximation to Binomial and Poisson	
		distribution(statement only) , Use of normal	
		tables.	
	1.4	Basic Concepts of Sampling and	
		Estimation theory:	
		Concept of Parameter and Statistic,	
		Sampling distribution.	
		Concept of bias and standard error.	
		Central Limit theorem (statement only).	
		Sampling distribution of sample mean and	
		sample proportion. (For large sample only),	
		Standard errors of sample mean and	
		sample proportion.	
	1.5	Estimation- Point and Interval estimate	
		(Confidence interval) of single mean, single	
		proportion from sample of large size.	
	2.1	Concept of Statistical hypothesis, Null and	
UNIT 2		alternate hypothesis, Simple and	15 hours
		Composite Hypothesis, Types of errors,	10 nours
		Critical region, Level of significance.	
	2.2	Large sample tests (using central limit	
		theorem)	
		 For testing specified value of 	
		population mean	

	Test of independence of attributes (Yates correction)
	Test of Goodness of Fit
2.4	Applications of Chi-Square Distribution:
	table.
	freedom, P.D.F and properties , Chi-square
2.3	Chi-Square Distribution: Degrees of
	proportion
	proportion
	difference of population
	For testing specified value of
	population proportion
	 For testing specified value of
	difference of two means
	 For testing specified value in

REFERENCES

- Medhi J. : Statistical Methods, An Introductory Text, Second Edition, New Age International Ltd.
- Agarwal B.L. : Basic Statistics, New Age International Ltd.
- Spiegel M.R. : Theory and Problems of Statistics, Schaum' s Publications series. Tata McGraw-Hill.
- Kothari C.R. : Research Methodology, Wiley Eastern Limited.
- David S. : Elementary Probability, Cambridge University Press.
- Hoel P.G. : Introduction to Mathematical Statistics, Asia Publishing House.
- Hogg R.V. and Tannis E.P. : Probability and Statistical Inference, McMillan Publishing Co. Inc.
- Pitan Jim : Probability, Narosa Publishing House.
- Goon A.M., Gupta M.K., Dasgupta B. : Fundamentals of Statistics, Volume II : The World Press Private Limited, Calcutta.

PRACTICAL Course Title: STATISTICAL METHODS-2	Course Code: SSTA244MNP
COURSE OUTCOMES:	

Through this paper, the learner will be able to

1. Obtain a probability density function and cumulative distribution function for a continuous

2023-2024 STATISTICS

random variable				
Apply standard continuous probability distributions to different				
situations				
Distinguish between point estimation and interval estimation				
4. Frame a hypothesis and validate the hypothesis.				
Lectures per week (1 Lecture is 60 minutes)			2	
Total number of Hours in a Semester			30	
Credits			1	
Evaluation System		Semester End Examination	2 Hours	50 marks
		Internal Assessment		
1	Continuous Random Variables			
2	Uniform and Exponential distribution			
3.	Normal Distribution			
4	Estimation and Sampling Theory			
5	Testing of Hypothesis			
6	Test of Significance			
7	Chi-Square			
8	Practicals Using Statistical Software			

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration