

DEPARTMENT OF MATHEMATICS & STATISTICS

COURSE DETAILS FOR MINOR:

	SEMESTER 3	SEMESTER 4
TITLE	Algebra	Discrete Mathematics
TYPE OF	Minor	Minor
COURSE-		
DSC		
CREDITS	4	4

Preamble:

Many people believe that mathematics is one of the most challenging subjects to learn in school. However, it is still very important in today's world. Mathematics is crucial to comprehending and resolving issues that arise in our daily lives, from the sophisticated systems that run our society to the everyday devices we utilise.

An essential component in the continual development of science and technology has been mathematics. The number of applications of mathematics used in practical problems has grown significantly in recent decades. The S.Y.B.Sc. Mathematics syllabus for Semesters III and IV have been designed to demonstrate to students the fundamental concepts of mathematics while exposing them to rigorous techniques systematically. Discrete Mathematics and Algebra encourage logical and mathematical reasoning.

Today, mathematics is an important instrument in many areas, including natural science, engineering, medicine, and the social sciences, used extensively throughout the world. New mathematical discoveries are inspired by and implemented by applied mathematics, the area of mathematics that deals with transferring mathematical knowledge to other domains. Applied mathematics additionally encourage the development of completely new sciences.

DO 1			
POI	To develop in the learner a scientific temperament.		
PO 2	Along with developing domain knowledge of several disciplines in the scientific stream, to		
	develop among the learning the fundamental amotical skills towards technical amoticiance		
	develop among the learners, the fundamental practical skins towards technical proficiency.		
PO 3	To enable the students to gain employability in various professional courses meet the		
105	To enable the students to gain employability in various professional courses, meet the		
	requirements for industrial professions, and have an opportunity of pursuing		
	antranreneurshin		
	endepreneursmp.		
PO 4	To enable the learners to comprehend a wide range of social and environmental challenges		
	and develop solutions oriented strategies to issues		
	and develop solutions-oriented strategies to issues		

PROGRAMME OBJECTIVES

PROGRAMME SPECIFIC OUTCOMES

PSO 1	The learner will be able to use logical and critical thinking abilities in problem solving and develop the habit of self-learning by the end of the course.
PSO 2	The learner will be able to create and apply quantitative models that emerge in business, social science, and other areas.
PSO 3	The learner will be able to analyse the mathematical outcomes and use them to solve numerous issues that arise in various areas of mathematics and associated disciplines
PSO 4	The learner will be able to identify trends and make a distinction between the problems' core components and non-essential ones.
PSO 5	The learner will be able to utilise technological expertise to address certain theoretical and applied issues in mathematics and other fields.

PSO 6	The learner will be able to convert verbally supplied information into a mathematical form, choose and use the proper mathematical formulas or techniques to process the information, and then make the necessary conclusion.
PSO 7	The learner will be able to recognise the relationships between different areas of mathematics and the connections between mathematics and other disciplines.

Program	Programme: Science Mathematics Minor			Semester – 1	
Mathematics Minor Course Title: Calculus 1			Commo Codos SMATIIIMN		
Course Litle: Calculus-1 Course Code: SMA1111MIN					
COURSE	<u>E OBJECTIVES:</u>				
To enable	the learner	1.44			
l. Top	provide the learner th	ne necessary skills to work on t	the numerical	applications of the concepts	
whi	le understanding the	structure of the natural numbe	r and integer s	systems	
	enable the learner be observents, and co	come competent in numerical	computations	using division, GCD, prime	
3. To c	levelop in the learner	r, the ability to use equivalence	e relations and	associated features to	
diff	erentiate between set	s of numbers.			
4. To e	enable the learner to	develop the capacity to compr	ehend, apply,	and solve numerical problems	
invo	olving the principles	of functions and binary operat	ions.		
COURSE	OUTCOMES:				
At the end	of the course the lea	urner will be able to			
1. The	learner will be able	to comprehend and apply the c	concepts of bir	hary operators, relations,	
2 Thr	augh logical induction	the learner will be able to	prove mathem	otical propositions and develop	
2. The	bematical ideas from	the foundational axioms	prove mathem	atient propositions and develop	
3 In o	rder to fulfill the rea	uirements of the numerical ass	ionments the	learner will be able to identify	
and	construct bijective a	nd invertible functions	igninents, the	learner win be able to identify	
4 The	learner will be able	identify and compute factors of	f a polynomia	l with multiplicity over the set	
of re	eal and complex num	bers, and also identify irreduc	ible polynomi	als.	
Lectures	per week (1 Lecture	e is 60 minutes)		3	
Total nun	nber of Hours in a S	Semester	45		
Credits			3		
Evaluatio	n System	Semester End Examination	2 Hours	50 marks	
		Internal Assessment		50 marks	
UNIT 1	Integers and divisib	ility (15 Hours)			
1.1	Statements of well-o	ordering property of non-negat	ive integers, F	Principle of finite induction (first	
	and second) as a con	nsequence of well-ordering pro	operty, Binom	ial theorem for non-negative	
	exponents, Pascal's	Triangle.	1 0	C	
1.2	Divisibility in integ	ers, division algorithm, greates	st common div	isor (g.c.d.) and least common	
	multiple (l.c.m) of t	wo integers, basic properties o	f gcd such as e	existence and uniqueness of	
	g.c.d. of integers a and b, g.c.d can be expressed as $ma+nb$. m.n are integers. Euclid's lemma.				
	Euclidean algorithm.				
1.3	Results on prime numbers and fundamental theorem of arithmetic.				
UNIT 2	Equivalence Relations and Congruences (15 Hours)				
2.1	Equivalence relations. Equivalence classes, properties such as two equivalence classes are either				
	identical or disjoint, definition of partition, every partition gives rise of an equivalence relation				
	and vice versa				
2.2	Congruence - defini	tion, elementary properties and	d applications	Euler's o function. Statements	
	of Euler's theorem	Fermat's theorem and Wilson	theorem and t	heir applications	
	<u> </u> incoroni,				

2.3.	Congruence as an equivalence relation on Z (set of integers), Residue classes and its properties.
2.4	Binary operations, properties and examples.
UNIT 3	Polynomials (15 Hours)
3.1	Definition of polynomial, Polynomials over F where F = Q or R, Algebra of polynomials, basic
	properties, division algorithm in F[X] (without proof) and g.c.d of two polynomials and its basic
	properties (without proof), Euclidean algorithm (without proof), applications,
3.2	Roots of a polynomial, relation between roots and coefficients, multiplicity of a root, remainder
	theorem, Factor theorem, applications, Necessary conditions for a rational number p/q to be a
	root of a polynomial with integer coefficients, simple consequences such as \sqrt{p} is an irrational
	number where p is a prime number.
3.3	Necessary conditions for a rational number p/q to be a root of a polynomial with integer
	coefficients, simple consequences such as \sqrt{p} is not a rational number where p is a prime
	number.
3.4	Complex numbers - DeMoivres Theorem, roots of unity, primitive roots of unity, solutions of
	the equation $w^n = z$. Fundamental theorem of algebra, roots of polynomials over R.

Main Reference:

- Elementary Number Theory, David M. Burton, Second Edition, UBS, New Delhi.
- Discrete Mathematics, Norman L. Biggs, Revised Edition, Clarendon Press, Oxford 1989.

Additional Reference Books:

- K.D. Joshi, Foundations in Discrete Mathematics, New Age Publishers, New Delhi, 1989.
- Kenneth H. Rosen, Discrete Mathematics and its applications, Mc-Graw Hill International Edition.
- Norman Biggs: Discrete Mathematics, Oxford Publishing House
- C.V. Sastry and Rakesh Nayak : A Textbook on Discrete Mathematics Wiley Publishing House
- Sussana S Epp: Discrete Mathematics with Applications Cengage
- Bernard Kolman, Robert Busby, Sharon Ross :Discrete Mathematics Structures Pearson
- T Veerarajan :Discrete Mathematics with Graph Theory McGraw Hill

PRACTICAL	Course Code: SMAT233MNP		
Course Title: Algebra			
COURSE OUTCOMES:			
At the end of the course the learner will be able to			
1. Comprehend and apply the concepts of binary operators, relations, functions, prime number			

- congruence's, division of integers, and GCD.
- 2. Prove mathematical propositions and develop mathematical ideas from the foundational axioms.
- 3. Identify and construct bijective and invertible functions.
- 4. Identify and compute factors of a polynomial with multiplicity over the set of real and complex numbers, and also identify irreducible polynomials.

Lectures per week (1 Lecture is 60 minutes)			2		
Total number of Hours in a Semester				30	
Credits				1	
Evaluation System Semester End Examination			2 Hours	50 marks	
		Internal Assessment			
1	Principle of finite induction				
2	Binomial theorem				
3.	G.C.D of an integer				
4	Equivalence relation and equivalence classes				

5	Congruence modulo relation on integers	
6	Functions and binary operations	
7	GCD of polynomials	
8	Root of a polynomial	
9	Complex root of a polynomial	

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration

Programme: Science Mathematics Minor			Semester – 4			
Course T	itle: Discrete Algeb	ra	Course Code: SMAT244MN			
COURSE OBJECTIVES:						
1. To provide the learner the necessary skills to work on the numerical applications of the concepts						
while	while understanding the process of counting in discrete sets.					
2. To ena	able the learner become	ne competent in the concepts	of polynomial	s and create models using them.		
3. To dev	velop in the learner, a	an appreciation of the different	applications	of the permutation maps and		
4 To en	ble the learner to de	velop the capacity to comprehe	e problems.	d solve numerical problems		
involv	ing the counting prir	ciples.	end, appry, an	a solve numerical problems		
COURSE	LEARNING OUT	COMES:				
1. The	learner will underst	and the properties of polynom	nials under the	e binary operations and solve		
the	m using the techniqu	les				
2. The	learner will be able	to use various counting princi	oles, permuta	tion and combination in		
nun	nerical problems and	l solve them with interpretation	on.			
3. The	learner will apply th	e concepts of Permutation ma	aps and deran	gements in understanding the		
vari	ous methods of plac	ement.				
Lectures	per week (1 Lecture	e is 60 minutes)		3		
Total nun	nber of Hours in a S	Semester		45		
Credits		Som ogton End Examination	2 11	<u> </u>		
Evaluatio	n System	Semester End Examination	2 Hours	50 marks		
UNIT 1	Counting Principles	(15 Hours)		JU III AI KS		
1.1	Addition and multir	blication principles, distribution	ns of distinct a	and non-distinct objects.		
	Multinomial coeffic	ients, combinatorial interpreta	tions, Multino	mial theorem (without proof),		
	applications	_				
1.2	Pigeonhole Principl	e (statement only) and its appl	ications.			
1.3.	Stirling number S(n	, k) and its elementary propert	ies.			
UNIT 2	RECURRENCE RE	ELATIONS AND COUNTING	PROBLEMS	5 (15 Hours)		
2.1	Recurrence Relation	ns, definition of homogeneous,	non-homoger	neous, linear, non- linear		
	recurrence relation,	obtaining recurrence relations	of Tower of H	Hanoi, Fibonacci sequence, etc.		
	in counting problem	IS.				
2.2	Solving homogene	ous as well as non-homogen	eous recurren	nce relations by using iterative		
	methods, solving a	nomogeneous recurrence rela	tion of second	a degree using algebraic method		
23	Counting problems	using tree diagrams				
LINUT 2	DEDMITATIONS DDINCIDI E OF INCLUSION EVELUSION AND ADDITIONS (15					
UNIT 5	Hours)					
3.1	Permutations of {1,	2,n}. Cycles and transposit	ions. Decomp	osition of a permutation as a		
	product of disjoint c	cycles and as product of transp	ositions. Inver	rsions in a permutation. Sign of a		
	permutation. Even and odd permutations.					
	Addition and multiplication of complex numbers, modulus and amplitude of a complex number,					
	Principle of inclusion and exclusion, its applications, derangements, explicit formula for dn					
1 2 9	Dringinla of inclusio	parts and the conjugate of a con-	ng dorongome	nta avaliait formula for da		

• Elementary Number Theory, David M. Burton, Second Edition, UBS, New Delhi.

• Discrete Mathematics, Norman L. Biggs, Revised Edition, Clarendon Press, Oxford 1989.

Additional Reference Books:

- K.D. Joshi, Foundations in Discrete Mathematics, New Age Publishers, New Delhi, 1989.
- Kenneth H. Rosen, Discrete Mathematics and its applications, Mc-Graw Hill International Edition.
- C.V. Sastry and Rakesh Nayak : A Textbook on Discrete Mathematics Wiley Publishing House
- Sussana S Epp: Discrete Mathematics with Applications Cengage
- Bernard Kolman, Robert Busby, Sharon Ross :Discrete Mathematics Structures Pearson
- T Veerarajan :Discrete Mathematics with Graph Theory McGraw Hill

PRACTI	PRACTICAL Course Code: SMAT244MNP					
Course Title: Discrete Mathematics						
COURSE	COURSE OUTCOMES:					
At the end	d of the course the lea	rner will be able to				
1. Uno	derstand the propert	ies of polynomials under the	binary operations and solve them using the			
tec	hniques					
2. Use	e various counting pri	nciples, permutation and con	nbination in numerical problems and solve			
the	m with interpretation	ן. געלי 11				
j. Apj	ply the concepts of Pe	ermutation maps and deranger	ments in understanding the various methods of			
Lectures	Lectures per week (1 Lecture is 60 minutes)					
Total nur	Total number of Hours in a Semester 30					
Credits	Credits 1					
Evaluatio	on System	2 Hours	50 marks			
	r					
1	Counting principles					
2	Pigeonhole principle					
3	Stirling's numbers					
4	Recurrence relations (homogeneous)					
5	Recurrence relations (non-homogeneous)					
6	Counting using trees					
7	Permutation maps					
8	Principle of inclusion	n and exclusion, derangement	S			

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration