SOPHIA COLLEGE (Autonomous)

Affiliated to **University Of Mumbai**

Syllabus Program: M.Sc. Class: M.Sc.-I Course: MICROBIOLOGY

With effect from the academic year 2020-2021

Theory: Semester 1

Course code	Unit	Topic Headings	Credits	Total number of lectures
SMSMCB101	1	Bacteriophages	4	15
Virology and Cell	2	Plant Viruses		15
Biology-I	3	Plasma membrane, Mitochondria and Chloroplast		15
	4	Endomembrane system		15
SMSMCB102 Genetics-I	1	DNA replication and Gene expression	4	15
	2	Recombination, Mutation and Repair		15
	3	Regulation of gene expression in bacteria		15
	4	Eukaryotic gene regulation and Epigenetics		15
SMSMCB103 Microbial Biochemistry	1	Aqueous Solutions and Acid- Base Chemistry	4	15
	2	Analytical Biochemistry		15
	3	Bioorganic Molecules		15
	4	Signaling and stress		15
SMSMCB104	1	Advances in Medical	4	15
Medical Microbiology		Microbiology part 1		
and Immunology	2	Advances in Medical		15
		Microbiology part 2		
	3	Immune system and health I		15
	4	Immune system and health II		15

Practicals: Semester 1 SMSMCBP1

Course code	Title	Credits
SMSMCBP101	Virology and Cell Biology-I	2
SMSMCBP102	Genetics-I	2
SMSMCBP103	Microbial Biochemistry	2
SMSMCBP104	Medical Microbiology and Immunology	2

Semester 1

SMSMCB101- Virology and Cell Biology-I

Learning Objectives

- To understand the replication and regulation of transcription of bacteriophages.
- To learn life cycle of plant viruses and agents that infect plants such as Viroids.
- To achieve the understanding of cell biology of eukaryotic microorganisms being Microbiology students.
- To understand cell biology of humans and animals in order to understand the life cycle of human and animal viruses.

Learning Outcomes

At the end of the course, students should be able to

- explain replication and regulation of gene expression of different bacteriophages.
- explain the structure, replication and life cycle of specific plant viruses and prevention and control of plant viral infections.
- explain role of membrane proteins and transport, mitochondrial ETC and ATP synthesis and chloroplast in eukaryotes.
- explain eukaryotic nuclear pore complex, Endoplasmic reticulum, Golgi complex and vesicle transport. They should also be able to elaborate vacuoles of eukaryotic microorganisms such as fungi, yeast (*Saccharomyces cerevisiae*) algae and amoeba.
- link cell biology concepts such as endocytosis, clathrin coated vesicles, transport of mRNAs from nucleus to cytoplasm with life cycle of human viruses which they will learn in semester 2.

COURSE CODE SMSMCB 101	UNIT	TITLE Virology and Cell Biology-I	Number Of Lectures
	Ι	Bacteriophages	15
		Students to revise general properties, structure ofbacteriophages and stages in a lytic life cycle of a typicalphage1.1 E.coli Phage T7: Genetic organization, regulation of	
		transcription, DNA replication and maturation (03 L) 1.2 <i>E.coli</i> Phage φX174: Replication, transcription, packaging (02 L)	
		1.3 Filamentous DNA phages- M13: Attachment and entry, replication, assembly and release (02 L)	
		 1.4 Single stranded RNA phages MS-2 and Qβ: Genetic organization and life cycle (01L) 1.5 Lambda phage: lytic and lysogenic cycle (05 L) 	
		1.6 Bacteriophage Mu: Properties, Genetic organization and replication (02 L)	
	II	Plant Viruses	15
		2.1 Viruses causing plant diseases: History, transmission, symptoms, detection, prevention and control (02 L)	
		2.2 Structure of plant viruses (01L)	
		2.3 Life cycles- overview (01L)	
		2.4 Tobacco Mosaic Virus- Life cycle, host range, transmission, symptoms, diagnosis and control (04 L)	
		2.5 Citrus Tristeza Virus (01L)	
		2.6 Applications of plant viruses (01L)	
		2.7 RNA interference (02 L)2.8 Plant satellites (01L)	
		2.8 Plant satellites (01L) 2.9 Viroids (02 L)	
	III	Plasma membrane, Mitochondria and Chloroplast	15
		Students to revise basic properties of cells, different classes of cells and functions of plasma membrane	
		3.1 Plasma membrane (06 L)	

a. Chemical composition of membranes- (in brief)	
i. Membrane lipids (phosphoglycerides,	
sphingolipids, cholesterol)	
ii. carbohydrates	
b. Structure and functions of membrane proteins -	
i. Integral membrane proteins	
C 1	
iii. lipid anchored membrane proteins	
c. Membrane lipids and fluidity	
d. Movement of substances across cell membranes	
i. Diffusion of substances through membranes	
5	
Voltage-gated channels,	
Ligand-gated channels,	
Mechano-gated channels	
ii. Facilitated diffusion	
iii. Active transport	
m. Active transport	
3.2 Mitochondria (06 L) a. Mitochondrial structure and function- membrane and	
matrix	
b. Oxidative metabolism in the mitochondrion	
c. Role of mitochondria in the formation of ATP	
i. Electron transport	
ii. types of electron carriers	
d. Establishment of proton motive force	
e. Machinery for ATP formation	
i. Structure of ATP synthase	
ii. basis of ATP formation, Rotational catalysis	
f. Peroxisomes	
3.3 Chloroplast (03 L)	
a. Chloroplast structure and function	
b. Photosynthetic metabolism	
c. Photosynthetic pigments	
d. Photosynthetic units and reaction centers	
i. PSII operations	
ii. PSI operations	
e. Photophosphorylation	
Endomembrane system	15
a. Nuclear envelope	
b. Structure of the Nuclear Pore Complex and its role in	
Nucleocytoplasmic exchange	

c. The endoplasmic reticulum	
d. The smooth endoplasmic reticulum	
e. Functions of the rough endoplasmic reticulum-	
synthesis and processing of proteins	
f. The Golgi complex	
g. Types of vesicle transport and their functions- Cop II-	
coated vesicles, Cop I-coated vesicles	
h. Fungal vacuoles, comparison with lysosomes	
i. Contractile Vacuoles in algae and amoeba	
j. Vacuoles in yeast Saccharomyces cerevisiae	
k. Endocytic pathway	

SMSMCB102- Genetics-I

Learning objectives

- To understand co-ordination of DNA replication and septum formation in bacteria.
- To understand molecular details of gene expression and its regulation in bacteria and eukaryotes.
- To learn recombination at the molecular level in bacteria and eukaryotic microorganisms such as yeast.
- To learn complementation test and fine structure mapping in bacteriophages.
- To learn recombination repair mechanisms in *E.coli* and eukaryotes.
- To learn epigenetic regulation of genes in eukaryotes.

Learning outcomes

At the end of the course, students should be able to

- understand concepts of molecular genetics.
- explain role of bacterial proteins in septum formation and segregation of chromosomes and also in partitioning of plasmids.
- explain molecular details of transcription, RNA processing and splicing and translation.
- elaborate different models of recombination, role of proteins in bacterial and eukaryotic recombination and mating type switching in *Saccharomyces cerevisiae*.
- explain complementation test and fine structure mapping and their significance.
- explain significance of recombination repair mechanisms in *E.coli* and eukaryotes.
- explain bacterial operons, mutations affecting regulation of gene expression, attenuation, antisense RNA and regulation during sporulation in *Bacillus*.
- explain eukaryotic gene regulation and epigenetics.

COURSE CODE SMSMCB 102	UNIT	TITLE Genetics-I	Number Of Lectures
	Ι	DNA replication and Gene expression	15
		 1.1 Replication and Genetics of Cell division in bacteria (05 L) a. Replication and cell cycle b. Septum formation in bacteria c. Function of FtsZ, MinCD and MinE d. Partitioning of Chromosomes e. Partitioning of single copy plasmids 	
		 1.2 Gene expression (10 L) a. Transcription Bacterial Transcription Eukaryotic Transcription b. RNA molecules and processing Messenger RNA- Structure, processing, addition of the 5' Cap, addition of the Poly (A) tail, RNA splicing, self splicing introns, introns of T4 bacteriophage, Alternative processing pathways, RNA editing Transfer RNA- Structure of transfer RNA, tRNA gene structure and processing Ribosomal RNA- Structure of the ribosome, rRNA gene structure and processing Translation The process of translation- The binding of amino acids to transfer RNAs The Initiation, elongation and termination of translation 	
	II	Recombination, Mutation and Repair	15
		2.1 Recombination (09 L) a. Holliday model	
		b. DSB repair model	

	c. Homologous recombination machines in	
	prokaryotes- RecBCD, RecA, RuvA, RuvB and	
	RuvC	
	d. Homologous recombination in eukaryotes and	
	proteins involved in the same	
	e. Mating type switching in Saccharomyces	
	cerevisiae	
	f. Concept of linkage	
	2.2 DNA Mutations (03 L)	
	(Students to revise the entire topic of Mutations from	
	T.Y.B.Sc.)	
	a. Mutagens- Base analogs (5-bromouracil,	
	2-aminopurine), Alkylating agents, Intercalating	
	agents	
	b. Complementation test and fine structure mapping	
	b. Complementation test and the structure mapping	
	2.3 DNA Repair (03 L)	
	a. Recombination repair in <i>E. coli</i>	
	b. NHEJ pathway	
III	Regulation of gene expression in bacteria	15
	3.1 Regulation of gene expression in bacteria (15 L)	
	a. Operons	
	a. Operons	
	a. Operonsi. The <i>lac</i> operon of <i>E. coli</i> –Experimental	
	 a. Operons i. The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> mutations, <i>lacI</i> gene regulatory mutations, 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^e</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon The <i>ara</i> operon of <i>E. coli</i>: Positive and negative 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^e</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^e</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon The <i>ara</i> operon of <i>E. coli</i>: Positive and negative control 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon The <i>ara</i> operon of <i>E. coli</i>: Positive and negative control The <i>trp</i> operon of <i>E. coli</i>- Attenuation 	
	 a. Operons The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon The <i>ara</i> operon of <i>E. coli</i>: Positive and negative control The <i>trp</i> operon of <i>E. coli</i>- Attenuation the <i>hut</i> operon 	
	 a. Operons i. The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^e</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon ii. The <i>ara</i> operon of <i>E. coli</i>: Positive and negative control iii. The <i>trp</i> operon of <i>E. coli</i>- Attenuation iv. The <i>hut</i> operon b. Antisense RNA 	
	 a. Operons i. The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^c</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon ii. The <i>ara</i> operon of <i>E. coli</i>: Positive and negative control iii. The <i>trp</i> operon of <i>E. coli</i>- Attenuation iv. The <i>hut</i> operon b. Antisense RNA c. Riboswitches 	
	 a. Operons i. The <i>lac</i> operon of <i>E. coli</i> –Experimental evidence for the regulation of <i>lac</i> genes, mutations in the protein-coding genes, mutations affecting the regulation of gene expression, operator mutations- <i>lacO^e</i> mutations, <i>lacI</i> gene regulatory mutations, promoter mutations, positive control of the <i>lac</i> operon ii. The <i>ara</i> operon of <i>E. coli</i>: Positive and negative control iii. The <i>trp</i> operon of <i>E. coli</i>- Attenuation iv. The <i>hut</i> operon b. Antisense RNA 	

IV	Eukaryotic gene regulation and Epigenetics	15
	4.1 Eukaryotic gene regulation (15 L)	
	a. Gene regulation in Eukaryotes-	
	i. Changes in chromatin structure	
	ii. Regulation of transcription factors and activators	
	iii. RNA Processing- Examples- SV40, sex	
	differentiation in Drosophila, Degradation of	
	RNA, RNA interference (briefly)	
	iv. Processes that affect Translation, modification of proteins.	
	b. Epigenetic regulation-	
	i. DNA methylation and demethylation,	
	ii. Histone modifications, Acetylation,	
	phosphorylation, Ubiquitinylation, Poly ADP	
	Ribosylation,	
	iii. Heterochromatin, histone variants,	
	iv. Nucleosome	
	v. Long non-coding RNA, alternate splicing,	
	vi. Mammalian development, dosage compensation and genomic imprinting (disorders/ diseases)	

SMSMCB103- Microbial Biochemistry

Learning Objectives

- To understand the chemistry underlying the preparation of solutions, buffers etc.
- To understand the purification of macromolecules and learn their properties using different instrumental techniques.
- To understand the structure and function of macromolecules: proteins, carbohydrates, lipids.
- To understand the signaling pathways in bacteria under environmental stresses.

Learning Outcomes

- At the end of the course the student should be able to
- prepare solutions and buffers of specific strength.
- apply purification techniques and characterize molecules.
- explain the correlation between structure and functions of macromolecules.
- explain the relationship between stress and signaling pathways for survival in bacteria.

COURSE CODE SMSMCB 103	UNIT	TITLE Microbial Biochemistry	Number Of Lectures
	Ι	Aqueous Solutions and Acid-Base Chemistry	15
		1.1 Various units of expressing and inter-converting concentration of solutions: molarity, moles, normality, osmolarity, molality, mole fraction	2
		1.2 Bronsted Concept of conjugate acid- conjugate base pairs, ionization of solutions, pH, titration curves	3
		1.3 Buffers: preparation, action and their use in Biology Henderson-Hasselbalch equation, buffer capacity	3
		1.4 Polyprotic acids, amphoteric salts, ionic strength of solutions	3
		1.5 Problem solving under all heads	4
	II	Analytical Biochemistry	15
		2.1 Determination of molecular weight, purity, length and volume of organic compounds	2
		2.2 General methods of extraction: salting out proteins, use of organic solvents	1
		2.3 Purification using chromatographic techniques	2
		2.4 Mass determination using Ultracentrifugation and GC-MS	2
		2.5 Different types of mass spectrometry and surface plasma resonance methods	2
		2.6 UV/visible, fluorescence, circular dichroism, NMR and ESR spectroscopy	3
		2.7 Determination of structure using X-ray diffraction and NMR	2
		2.8 Radiolabeling techniques: Properties of different types of radioisotopes normally used in biology, their detection and measurement; incorporation of radioisotopes in biological tissues and cells, molecular imaging of radioactive material, safety guidelines.	1
	III	Bioorganic Molecules	15
		3.1 Amino acids: Classification and stereochemistry, properties, biochemical information from amino acid sequence, derivative, ionization	2
		3.2 Structure and function of Proteins: Structure of peptide bond, stability of peptide bond, Ramachandran plot	3
		3.3 Protein structure, factors determining secondary, tertiary structures: amino acid sequence,	3

	thermodynamics of folding, role of disulfide bonds, dynamics of globular protein folding, chaperonins. Protein folding diseases: amyloid diseases and prions.	
	3.4 Motifs and domains, protein families, protein stability, prediction of secondary and tertiary structure, protein-protein interactions	2
	3.5 Glycobiology: Carbohydrates, stability of glycosidic bond, glycoconjugates, proteoglycans, glycoproteins, glycolipids, homopolysaccharide folding, functions of oligosaccharides	2
	3.6 Lipids: Classification, structure of lipids in membranes- glycerolipids, ether lipids, galactolipids, sulfolipids, lipids in archaebacteria, sphingolipids, terpenes, isoprenoids, Functions of lipids- signals, cofactors, pigments	3
IV	Signaling and stress	15
	 4.1 Introduction to two-component signaling systems: Response by facultative anaerobes to anaerobiosis, nitrate and nitrite, nitrogen and inorganic phosphate supply Synthesis of virulence factors in response to temperature, pH, nutrient, osmolarity and quorum sensors, chemotaxis, photoresponses, aerotaxis 	5
	4.2 Effect of oxygen and light on the expression of photosynthetic genes in purple photosynthetic bacteria, response to osmotic pressure and temperature, response to potassium ion and external osmolarity, response to carbon sources	4
	4.3 Bacterial response to environmental stress- heat- shock response, repairing damaged DNA, the SOS response, oxidative stress	2
	4.4 Bacterial development and quorum sensing: Myxobacteria, Caulobacter, bioluminescence, systems similar to LuxR/LuxI in non-luminescent bacteria, Biofilm development.	4

SMSMCB104-Medical Microbiology and Immunology

Learning Objectives

- Keeping in mind the threat of emerging and re-emerging diseases that the world is facing today, students will be taught emerging and re-emerging diseases as per the World Health Organization list, published in 2015 and also those most prevalent in Asian countries.
- They will also be taught the modes of transmission, pathogenesis, clinical manifestation, lab diagnosis, containment procedures to prevent unintentional exposure to bio hazardous agents and treatment of the emerging and re-emerging diseases.
- To understand the mechanism of the inflammation process and role of leukocytes, chemokines and other mediators in this process.
- To understand biological activity of cytokines, the structure of cytokines and their receptors, and therapeutic uses of cytokines or their receptors.
- To understand the immune responses to infectious diseases caused by viruses, bacteria, protozoa, and helminths.
- To understand the importance of gut flora in health and disease.

Learning Outcomes

At the end of the course, students should be able to:

- understand modes of transmission, pathogenesis, clinical manifestation, lab diagnosis, containment procedures to prevent unintentional exposure to bio hazardous agents and treatment of the emerging and re-emerging diseases.
- understand the process of inflammation and the key mediators involved in this process.
- the role of cytokine in different immune processes; cytokine profile of TH1 and TH2 and TH17 subsets and their therapeutic uses.
- the innate and adaptive immune responses to infectious diseases caused by viruses, bacteria, protozoa, and helminths.
- the changes in gut flora with age, the techniques used to study gut flora and importance of gut microflora in health and disease.

COURSE CODE SMSMCB 104	UNIT	TITLE Medical Microbiology and Immunology	Number Of Lectures
	Ι	Advances in Medical Microbiology part –I	15
		1.1 Bacterial Emerging and Re-emerging Diseases Detailed Study: Common factors of emerging and reemerging diseases and their causes, Etiology, Transmission, Pathogenesis, Clinical manifestation, Lab diagnosis, Prevention and Treatment.a. Listeriosisb. VRE (Vancomycin Resistant Enterococci) c. Leptospirosisd. Drug resistant Tuberculosise. Conditions caused by <i>Helicobactor pylori</i> , <i>Campylobacter</i> and MRSA	
	II	Advances in Medical Microbiology part –I	15
		 2.1 Viral Emerging and Re-emerging Diseases Detailed Study: Common factors of emerging and reemerging diseases and their causes, Etiology, Transmission, Pathogenesis, Clinical manifestation, Lab diagnosis, Containment procedures to prevent unintentional exposure to biohazardous agents and Treatment. a. SARS b. Chickungunya c. Swine flu d. Zikavirus e. Dengue f. Japanese Encephalitis g. Nipah h. Ebola i. COVID-19 	
	III	Immune system and health I 3.1 Immunity to infection Leukocyte migration and inflammation a. Lymphocyte Recirculation b. Cell-Adhesion Molecules c. Neutrophil Extravasation	15

		Lymphocyte Extravasation	
	e.	Chemokines—Key Mediators of Inflammation	
	f.	Other Mediators of Inflammation	
	g.	The Inflammatory Process	
	h.	Anti-Inflammatory Agents	
_	3.2 C	ytokines	
	a.	Properties of Cytokines	
		Cytokine Receptors	
		Cytokine Antagonists	
		Cytokine Secretion by TH1 and TH2 & TH17	
		Subsets	
	e.	Cytokine-Related Diseases	
	f.	Therapeutic Uses of Cytokines and Their Receptors	
		Cytokines in Hematopoiesis	
	-		
IV	Immu	ne system and health II	15
IV		ne system and health II Adversial strategies during infection	15
IV	4.1	-	15
IV	4.1 a.	Adversial strategies during infection	15
IV	4.1 a. b.	Adversial strategies during infection Immunity to extracellular bacteria	15
IV	4.1 a. b. c.	Adversial strategies during infection Immunity to extracellular bacteria Immunity to Intracellular bacteria	15
IV	4.1 a. b. c. d.	Adversial strategies during infection Immunity to extracellular bacteria Immunity to Intracellular bacteria Immunity to Viral infection	15
IV	4.1 a. b. c. d.	Adversial strategies during infection Immunity to extracellular bacteria Immunity to Intracellular bacteria Immunity to Viral infection Immunity to Fungi Immunity to Parasitic infection	15
IV	4.1 a. b. c. d. e. 4.2	Adversial strategies during infection Immunity to extracellular bacteria Immunity to Intracellular bacteria Immunity to Viral infection Immunity to Fungi Immunity to Parasitic infection Gut Flora in Health and Disease	15
IV	4.1 a. b. c. d. e. e. 4.2 a.	Adversial strategies during infection Immunity to extracellular bacteria Immunity to Intracellular bacteria Immunity to Viral infection Immunity to Fungi Immunity to Parasitic infection	15
IV	4.1 a. b. c. d. e. 4.2 a. b. c.	Adversial strategies during infection Immunity to extracellular bacteria Immunity to Intracellular bacteria Immunity to Viral infection Immunity to Fungi Immunity to Parasitic infection Gut Flora in Health and Disease Changes in gut microflora with age Techniques for the study of gut microbiome The interplay between nutrition on gut flora	15
IV	4.1 a. b. c. d. e. 4.2 a. b. c. d.	Adversial strategies during infectionImmunity to extracellular bacteriaImmunity to Intracellular bacteriaImmunity to Viral infectionImmunity to FungiImmunity to Parasitic infectionGut Flora in Health and DiseaseChanges in gut microflora with ageTechniques for the study of gut microbiome	15

Practicals- Semester 1 SMSMCBP1 SMSMCBP101 Virology and Cell Biology-I

Sr. No	Name of the experiment
1	Enumeration of coliphages by plaque assay.
2	Study of one step growth curve of T4 bacteriophage.
3	Study of lysogeny in E. coli.
4	Assignment/Activity on plant viruses/ viroids.
5	Study of cell membrane integrity using uptake of neutral red.
6	Isolation of mitochondria from the cell.
7	Isolation of chloroplasts.

SMSMCBP102 Genetics-I

Sr. No	Name of the experiment
1	Separation of plasmid or genomic DNA using agarose gel electrophoresis.
2	Bacterial conjugation.
3	UV mutagenesis.
4	Penicillin enrichment technique.
5	Ames test.
6	β- galactosidase assay.
7	Problems on <i>lac</i> operon.

SMSMCBP103 Microbial Biochemistry

Sr. No	Name of the experiment
1	Preparation of buffers.
2	Determination of pK and pI value for an amino acid.
3	Extraction of total lipids.
4	Isolation of cholesterol and lecithin from egg yolk.
5	Identification of fatty acids and other lipids by TLC.
6	Determination of degree of unsaturation of fats and oils.
7	Isolation of lactose from bovine milk.
8	Estimation of total sugars by phenol-sulphuric acid method.
9	Isolation of glutamic acid from gluten.
10	Determination of molar absorption coefficient (ɛ) of l-tyrosine.
11	Determination of the isoelectric point of the given protein.
12	Estimation of polyphenols/ tannins by Folin-Denis method.
13	Adaptation of <i>E.coli</i> to anaerobiosis.
14	Chemotaxis of Pseudomonas.
15	Effect of temperature and water activity on swarming of <i>Proteus</i> .
16	Visit to any centre/research lab for Demonstration of HPLC / GC.

SMSMCBP104 Medical Microbiology and Immunology

Sr. No	Name of the experiment
1	Group project:
	a) How can governments stop the happening of pandemics?
	OR
	b) Application of bioinformatics in medical sciences: Finding a drug
	suitable for an emerging disease (refer NCBI website).
2	Problem solving exercises in medical microbiology based on diseases
	caused by- Chikungunya, <i>Helicobacter</i> , Leptospirosis, Drug resistant TB,
	Campylobacter, MRSA, Swine flu, Zikavirus, Dengue, Nipah, Ebola or
	Japanese encephalitis, SARS and COVID-19.
3	Acid fast staining for <i>M. tuberculosis</i> .
4	Diagnosis for Helicobacter pylori: (Demonstration) Urea breath test and
	test for urease production in biopsy samples.
5	Diagnosis of VRE: Using isolation, biochemical tests and AST.
6	Diagnosis of dengue: Use of NS1 antigen kit.
7	Diagnosis for Swine flu-H1N1: Hemagglutination & Hemagglutination
	inhibition test.
8	Diagnosis for Leptospirosis: Spirochaete staining.
9	RT-PCR for diagnosing COVID 19 or any other disease (demonstration).
10	ELISA (Demonstration): A diagnostic method for most viral infections.
11	To observe and write about any one type of test to detect resistant
	Mycobacteria: Bactec MGIT 960 system /Reverse line blot assay/X-pert
	MTB or RIF assay/Line Probe assay. (Can visit any hospital)
12	Study of virulence factors:
	a) Phagocytosis
	b) Phagocytic index
13	Collection of human blood & separation of mononuclear cells by Ficoll
	hypaque density gradient centrifugation.
14	Trypan blue, mononuclear cells viability assay.

References – Semester 1

SMSMCB101

- 1. Freifelder, David. 2004. Molecular Biology, 2nd edition. Narosa Publishing House.
- 2. Russell, Peter J. 2010. iGenetics: A Molecular Approach, 3rd edition. Pearson.
- 3. Shors, Teri. 2009. Understanding viruses, 1st edition. Jones and Bartlett Publishers.
- 4. Hull, Roger. 2013. Plant Virology, 5th edition. Academic Press.
- 5. Mahy, Brian WJ., and Regenmortel, Marc HV Van. 2010. Desk Encyclopedia of General Virology. Elsevier.
- 6. Cann, Alan. 2015. Principles of Molecular Virology, 6th edition. Academic Press.
- 7. Karp, Gerald. 2010. Cell and Molecular Biology, 6th edition. John Wiley & Sons, Inc.
- Klionsky, Daniel J., Herman, Paul K., and EMR, Scott D. (1990). The Fungal Vacuole: Composition, Function and Biogenesis. *American Society for Microbiology*. 0146 (0749):266-292.
- 9. Li, Sheena Claire., and Kane, Patricia M. (2009). The Yeast Lysosome-like Vacuole: Endpoint and Crossroads. *Biochim Biophys Acta*. 1793 (4):650-663.

Additional references:

- Watson, James D., Baker, Tania A., Bell, Stephen P., Gann A., Levine, M., Losick., R. 2003. Molecular Biology of the Gene, 5th edition. Cold Spring Harbor Laboratory Press.
- Watson, James D., Baker, Tania A., Bell, Stephen P., Gann A., Levine, M., Losick., R. 2013. Molecular Biology of the Gene, 7th edition. Pearson.
- 3. Lewin, Benjamin. 2004. Genes VIII. Pearson.
- 4. Madigan, M., Martinko, J., Bender, K., Buckley, D., and Stahl, D. 2015. Brock Biology of Microorganisms 14th Edition. Pearson.
- 5. Tropp, Burton E. 2007. Molecular Biology Genes to Proteins, 3rd edition. Jones and Bartlett publishers.
- Lodish, Harvey., Berk, Arnold., and Kaiser, Chris A. 2007. Molecular Cell Biology, 6th edition. W.H. Freeman & Co Ltd.
- 7. De Robertis, E.D.P. 2017. Cell and Molecular Biology, 8th edition. LWW.
- 8. Simm, Claudia., Lahner, Brett., Salt, David., LeFurgey, Ann., Ingram, Peter., Yandell, Brian., and Eide, David J. (2007). *Saccharomyces cerevisiae* Vacuole in Zinc Storage and Intracellular Zinc Distribution. *Eukaryotic Cell*. 1535(9778):1166-1177.

SMSMCB102

- 1. Lewin, Benjamin. 2004. Genes VIII. Pearson.
- 2. Lewin, Benjamin. 2007. Genes IX., Jones and Bartlett publishers.
- 3. Pierce, B. 2008. Genetics- a conceptual approach, 3rd edition, W.H. Freeman and Company.
- Watson, James D., Baker, Tania A., Bell, Stephen P., Gann A., Levine, M., Losick., R. 2003. Molecular Biology of the Gene, 5th edition. Cold Spring Harbor Laboratory Press.

- Watson, James D., Baker, Tania A., Bell, Stephen P., Gann A., Levine, M., Losick., R. 2013. Molecular Biology of the Gene, 7th edition. Pearson.
- 6. Stanier, Roger Y., Adelberg, Edward A., and Ingraham, John L. 1976. General Microbiology, 4th edition. Macmillan.
- 7. Russell, Peter J. 2010. iGenetics: A Molecular Approach, 3rd edition. Pearson.
- 8. Gottschalk, Gerhard. 1985. Bacterial Metabolism, 2nd edition. Springer, New York, NY.
- 9. Weaver, Robert F. 2012. Molecular Biology, 5th edition. McGraw-Hill.
- 10. White, David. 2006. The Physiology and Biochemistry of Prokaryotes, 3rd edition. OUP.
- 11. Watson, James D., Caudy Amy A., Myers, Richard M., and Witkowski Jan A. 2007 Recombinant DNA, Genes and Genomics - A short course, 3rd Edition. W.H. Freeman and Company.
- 12. Brooker, Robert. 2017. Genetics: Analysis and Principles, 6th edition. McGraw-Hill Higher Education.

Additional references:

- 1. Snustad, Peter D., Simmons, Michael J. 2003. Principles of Genetics, 3rd edition. John Wiley & Sons, Inc.
- Snustad, Peter D., Simmons, Michael J. 2012. Principles of Genetics, 6th edition. John Wiley & Sons, Inc.
- 3. Freifelder, David. 2004. Molecular Biology, 2nd edition. Narosa Publishing House.
- 4. Tamarin, Robert H. 2002. Principles of Genetics, 7th edition. McGraw-Hill.
- 5. Tropp, Burton E. 2007. Molecular Biology Genes to Proteins, 3rd edition. Jones and Bartlett publishers.
- Klug William S., Cummings Michael R. 2000. Concepts of genetics. 6th Edition. Prentice Hall.
- Snyder, Larry., Peters, Joseph. E., Henkin, Tina M., and Champness, Wendy. 2013. Molecular Genetics of bacteria, 4th edition. Wiley-Blackwell.

SMSMCB103

- 1. Lehninger Principles of Biochemistry Nelson, D., and Cox, (4th Ed.), 2005 M.; W.H. Freeman and Company, New York
- 2. Biochemical calculations, Segel I.R., 2nd edition, 2004, John Wiley and Sons
- 3. Lab Manual in biochemistry Jayaraman, New Age International Publishers
- 4. The physiology and biochemistry of prokaryotes, White D., 4th edition, 2011, Oxford University Press

Additional references:

- 1. Principles of Biochemistry, Zubay 4th edition 1998 Wm. C. Brown Publishers,
- 2. Biochemistry, Mathew, Van Holde and Ahern, 3rd edition 1999, Pearson Education
- 3. Exploring proteins: Student's guide to experimental skills and methods, N. Price J. Naira, 2009 Oxford University Press

Practical:

- 1. Laboratory manual in biochemistry by Jayaraman J., New Age International Publishers
- 2. An introduction to practical biochemistry 3rd_PP edition, David T Plummer, Tata McGraw Hill edition 1998
- 3. Experimental biochemistry –A student companion, Rao Beedu, S. Deshpande, IK international Pvt. Ltd.
- 4. Laboratory manual in biochemistry, Immunology and Biotechnology, Nigam A and Ayyagiri A. Tata McGraw Hill edition
- 5. Source of Experiments for teaching Microbiology, Primrose and Wardlaw
- 6. Microbial Physiology and Biochemistry Laboratory manual: A quantitative approach, David White
- Principles and techniques of practical biochemistry, 4th_PP edition, Wilson K. and Walker J. (Ed.) Cambridge University Press, 1994

SMSMCB104

- 1. Understanding Emerging and Re-emerging Infectious Diseases. First edition 2018-Suparna Dugal & Jyoti Mantri- Himalaya Publishing House.
- 2. Textbook of Microbiology 8th edition 2009-Ananthnarayan & Paniker-University press.
- 3. Clinics in laboratory medicine, Emerging Infections and their causative agents. September 2004 vol. 24 no. 3.
- 4. Basic laboratory methods in clinical bacteriology, WHO 2003
- 5. Textbook of Medical laboratory technology by Praful B. Godkar, Darshan P. Godkar. 3rd edition volume 1& 2.
- 6. Immunology Essential and Fundamental, Sulabha Pathak and Urmi Palan, 3rd edition, 2011, Capital Publishing Company.
- 7. Immunology- Kuby, 6th edition, 2006, W. H. Freeman and Company- New York.
- 8. The Elements of immunology- Fahim Halim Khan, 2009, Pearson Education.
- 9. Immunology an introduction- Ian R. Tizard-Thomson, 4th edition, 2006
- 10. Immunobiology: The immune system in health and disease, Janeway.Travers 6th ed, 2006,
- Gut Microbiota in Health and Disease, Inna Sekirov, Shannon I. Russell, L. Caetano M. Antunes, and B. Brett Finlay, Physiol Rev 90: 859–904, 2010
- 12. Human microbiota research June 2019 www.nature.com/collections/microbiotamilestone
- The Human Gut Microbiota, JRC technical reports, EU Science Hub, https://ec.europa.eu/jrc PDF. ISBN 978-92-79-86471-1. ISSN 1831-9424 doi: 10.2760/17381.

Theory: Semester 2

Course code	Unit	Topic Headings	Credits	Total number of lectures
SMSMCB201	1	Human Viruses	4	15
Virology and Cell Biology-II	2	Emerging and re-emerging viruses, Tumor viruses and Prions		15
	3	Cytoskeleton, Cellular reproduction and Development of multicellular organisms		15
	4	Signaling, Communication and Programmed cell death in microorganisms		15
SMSMCB202 Genetics-II	1	Mendelian Genetics and Population Genetics	4	15
	2	Evolutionary Genetics, Transposable genetic elements and Cancer		15
	3	Techniques used in Genetics		15
	4	Bioinformatics and Functional Genomics		15
SMSMCB203 Microbial	1	Biosynthesis and Molecular Physiology	4	15
Biochemistry	2	Enzymology		15
	3	Metabolism of one & two carbon compounds		15
	4	Microbial Degradation of xenobiotics		15
SMSMCB204	1	Epidemiology of Infectious Diseases	4	15
Medical Microbiology and Immunology	2	Clinical Research in Medical Microbiology		15
	3	Clinical Immunology I		15
	4	Clinical Immunology II		15

Practicals: Semester 2 SMSMCBP2

Course code	Title	Credits
SMSMCBP201	Virology and Cell Biology-II	2
SMSMCBP202	Genetics –II	2
SMSMCBP203	Microbial Biochemistry	2
SMSMCBP204	Medical Microbiology and Immunology	2

Semester 2

SMSMCB201- Virology and Cell Biology-II

Learning Objectives

- To understand molecular biology and life cycle of human viruses as per Baltimore classification scheme.
- To understand emergence and re-emergence of viruses, their role in cancer and working with them in the research laboratory.
- To learn Prions and genetic experiments performed.
- To understand cytoskeletal elements and their functions.
- To learn eukaryotic cell cycle, mitosis and meiosis emphasizing more on yeasts *Saccharomyces cerevisiae and mold Neurospora crassa.*
- To learn Development of multicellular organisms such as Drosophila melanogaster.
- To learn signalling and communication in eukaryotic microorganisms such as fungi and yeast *Candida albicans*.
- To learn programmed cell death in bacteria and yeasts.

Learning Outcomes

At the end of the course, students should be able to

- explain replication and life cycle of different viruses, mechanism of retroviruses induced tumors, DNA tumor viruses, oncolytic viruses and Prion only hypothesis.
- explain the structure and functions of Microtubules, Intermediate filaments and Microfilaments.
- explain the cell cycle and checkpoints and their significance, stages of mitosis and meiosis and life cycle of mold *Neurospora crassa*. They should be able to connect the cellular reproduction with Paper 2 topics such as Mendelian Genetics, Extensions of the same and Cancer.
- explain the development of model organism *Drosophila melanogaster* and role of different genes in its development.
- elaborate cell signalling and signal transduction, MAP kinase pathway in fungi, Ras signaling in yeast *Candida albicans*.
- explain programmed cell death in *E.coli*, during sporulation in *Bacillus subtilis*, in *Myxococcus xanthus* and programmed cell death and aging in *Saccharomyces cerevisiae*.

COURSE CODE SMSMCB 201	UNIT	TITLE Virology and Cell Biology-II	Number Of Lectures
	Ι	Human Viruses	15
		Students to revise Baltimore classification scheme	
		Structure, Replication and Life cycle of following viruses	
		 1.1 Baltimore class 1 viruses a. Poxviruses (Variola major and Vaccinia) (02 L) b. Herpesviruses (02 L) 	
		1.2 Baltimore class 2 viruses- Parvovirus (01L)	
		1.3 Baltimore class 3 viruses- Rotavirus (02 L)	
		1.4 Baltimore class 4 viruses- Rhinovirus (02 L)	
		 1.5 Baltimore class 5 viruses a. Rabies virus (01L) b. Measles virus (02 L) 	
		1.6 Baltimore class 6 viruses- Students to revise HIV from T.Y.B.Sc. (Class activity)- (01L)	
		1.7 Baltimore class 7 viruses- Hepatitis B virus (02 L)	
	II	Emerging and re-emerging viruses, Tumor viruses and Prions	15
		 2.1 Emerging and reemerging viruses - Factors contributing to emergence and re-emergence, Structure and Life cycle (06 L) a. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) b. West Nile Virus (WNV) c. Dengue virus 	
		 2.2 Tumor viruses (04 L) Students to revise important definitions related to Cancer and characteristics of transformed cells a. Molecular mechanisms of virally induced tumor formation by RNA tumor viruses (Retroviruses) b. DNA tumor viruses - Human Papilloma Virus, Adenoviruses, Simian Virus- 40 c. Oncolytic viruses 	

		 2.3 Prions (02 L) a. History, case studies b. PRNP gene, Prion only hypothesis c. Biochemical analysis of the prion amino acid sequence d. Genetic Research and experiments with knockout mice 	
		2.4 Working with viruses in the research laboratory (03 L)	
	III	Cytoskeleton, Cellular reproduction and Development of multicellular organisms	15
		 3.1 Cytoskeleton (08 L) a. Overview of the major functions of the cytoskeleton b. Microtubules i. Structure and composition ii. Microtubule-associated proteins iii. Motor proteins - kinesins, cytoplasmic dynein iv. Microtubule-organizing centers (MTOCs) v. The dynamic properties of microtubules c. Intermediate filaments i. Intermediate filament assembly and disassembly ii. Types and functions d. Microfilaments i. Microfilament assembly and disassembly ii. Myosin: the molecular motor of actin filaments e. Cytoskeletal elements in bacteria 	
		 3.2 Cellular Reproduction (05 L) a. The cell cycle b. Control of the cell cycle c. Mitosis d. Meiosis e. Life cycle of mold <i>Neurospora crassa</i> 	
-		3.3 Development of Multicellular Organisms (02 L) a. Genetics of Pattern formation in <i>Drosophila</i> i. Egg-polarity genes	

	ii. Segmentation genesiii. Homeotic genesb. Homeobox genes in other organisms		
IV	Signalling, Communication and Programmed cell death in microorganisms		
	 4.1 Signalling, communication and programmed cell death in microorganisms (15 L) a. The basic elements of cell signalling systems b. G protein-coupled receptors and signal transduction by them c. MAP Kinase Pathway in fungi d. Ras signalling in pathogenic yeast <i>Candida albicans</i> e. Communication in Fungi- Messengers- Peptides, alcohols, lipids and volatile compounds f. Programmed cell death in bacteria- i. Programmed cell death in <i>E.coli</i> ii. Plasmid addiction systems iii. Lysis of the mother cell during sporulation of <i>Bacillus subtilis</i> iv. Lysis of vegetative cells in fruiting body 		
	formation of <i>Myxococcus xanthus</i> g. Programmed cell death and aging in <i>Saccharomyces cerevisiae</i>		

SMSMCB202- Genetics-II

Learning objectives

- To understand Mendelian genetics, principles of inheritance and extensions of and deviations from Mendelian genetics.
- To introduce students to concepts and principles associated with population genetics and evolutionary genetics.
- To understand the genetic basis of cancer.
- To learn about the Transposable genetic element in prokaryotes and eukaryotes.
- To learn the techniques used for study of genetics.
- To learn basics and applications of bioinformatics.

Learning outcomes

At the end of the course, students should be able to

- explain the Mendelian principles and acquire knowledge of its extensions and deviations.
- understand the principles of population genetics and evolutionary genetics.
- understand the genetic basis of cancer.
- elaborate on the Transposable genetic elements in prokaryotes and eukaryotes.
- elaborate on the techniques used for study of genetics.
- understand the basics of computational biology and applications of bioinformatics.

COURSE CODE SMSMCB 202	UNIT	TITLE Genetics-II	Number Of Lectures
	Ι	Mendelian Genetics and Population Genetics	15
		 1.1 Mendelian Genetics (03 L) a. Mendel's experimental design b. Monohybrid crosses and Mendel's principle of Segregation i. Branch diagram of monohybrid crosses ii. Use of testcrosses c. Dihybrid crosses and Mendel's principle of Independent Assortment i. Branch diagram of dihybrid crosses d. Trihybrid crosses e. Mendelian genetics in Humans- Pedigree analysis (Only concept, No specific examples of human genetic traits) 	
		 1.2 Extensions of and Deviations from Mendelian Genetic Principles (06 L) a. Multiple Alleles b. Modification of dominance relationships i. Incomplete dominance ii. Codominance iii. Molecular explanations c. Essential genes and lethal alleles d. Gene expression and environment e. Epistasis i. Recessive epistasis ii. Dominant epistasis f. Extranuclear Inheritance (non-Mendelian) i. Extranuclear genomes ii. Rules of extranuclear inheritance iii. Examples of extranuclear inheritance 	
		 1.3 Population Genetics (06 L) a. Genotypic and allelic frequencies b. Calculation of genotypic and allelic frequencies for autosomal and X linked loci c. Hardy-Weinberg Law and calculation of genotypic frequency at Hardy Weinberg equilibrium d. Factors affecting genotypic and allelic frequencies e. Changes in genetics structure of populations (mutation, migration & gene flow, genetic drift and 	

	natural selection) f. Measuring genetic variation	
II	Evolutionary Genetics, Transposable genetic elements and Cancer	15
	2.1 Evolutionary Genetics (04 L)	
	a. Molecular Evolution	
	i. Protein variation	
	ii. DNA sequence variation	
	iii. Molecular evolution of HIV in a Florida	
	Dental Practice	
	iv. Patterns of molecular variation	
	v. Molecular clock	
	vi. Evolution of drug resistance in	
	Mycobacterium tuberculosis	
	2.2 Transposable genetic elements (05 L)	_
	a. Transposable elements in prokaryotes: An	
	overview	
	b. The medical significance of bacterial transposons	
	c. Transposable elements in eukaryotes	
	i. Ac and Ds elements in Maize	
	ii. P elements and hybrid dysgenesis in	
	Drosophila	
	iii. Mariner, an ancient and widespread	
	transposon	
	d. Retrotransposons	
	i. Retrovirus like elements	
	ii. Retroposons	
	e. The genetic and evolutionary significance of	
	transposable elements	
	i. Transposons as mutagensii. Transposons and genome organization	
	ii. Transposons and genome organization	
	2.3 Genetic basis of cancer (06 L)	
	a. Cancer- Introduction	
	b. Mutations in different types of genes	
	c. Change in chromosome number and structure,	
	d. Changes in DNA methylation	
	e. Sequential mutations	
III	Techniques used in Genetics	15
	3.1 Techniques used in studying Genetics (15 L)	

IV	 a. Microarrays b. Positional cloning c. RFLP d. Genetic fingerprinting, e. High resolution mapping f. Autoradiography g. Nucleic acid hybridization h. DNA typing with their forensic applications, i. DNA sequencing (Sanger's chain termination method, Pyrosequencing), j. Restriction mapping k. Site directed mutagenesis l. Mapping and quantifying transcripts (S1 mapping, primer extension, run-off transcription) m. Measuring transcription rates in vivo (Nuclear run – on transcription, reporter gene transcription), n. Assaying DNA –protein interactions (Filter binding, gel mobility shift, DNase and DMS foot printing.) 	15
	 4.1Bioinformatics (09 L) a. Introduction to bioinformatics, scope and applications b. Databases c. Sequence alignment, dynamic programming: the Needleman and Wunsch Algorithm d. Prediction of genes and annotation methods e. Phylogenetic analysis f. Protein classification and structure prediction g. Structure visualization h. Packages for genomic analysis (EMBOSS) i. Introduction to Linux and Perl 	13
	 4.2 Functional Genomics (06 L) a. Introduction to Genomics (Structural, Functional and Comparative) b. Genome projects c. Gene disruption knock outs d. Developmental regulation using DNA chips e. CRISPR Cas gene editing with case studies 	

SMSMCB203- Microbial Biochemistry

Learning Objectives

- To understand the biosynthesis of macromolecules and also to understand physiology of autotrophs.
- To understand enzyme kinetics, catalysis and inhibition.
- To understand regulation of pathways using enzymes.
- To understand metabolism of one carbon compounds.
- To understand microbial degradation of xenobiotics.

Learning Outcomes

At the end of the course the student should be able to

- write the metabolic pathways for the biosynthesis of macromolecules.
- explain assimilation of nitrogen and pathways involved therein.
- explain the mechanism of action of an enzyme on a substrate and also different types of inhibitions.
- explain the mechanism of regulation of pathways using enzymes.
- explain the synthesis of precursors and energy using one or two carbon sources.
- explain the pathways involved in biodegradation of xenobiotics and its importance.

COURSE CODE SMSMC B203	UNIT TITLE Microbial Biochemistry							
	Ι	Biosynthesis & Molecular physiology	15					
		1.1 Nitrogen metabolism: Biosynthesis of five families of amino acids and histidine, Biosynthesis of purine and pyrimidine bases	4					
		1.2 Lipid biosynthesis: Synthesis of storage lipids: Fatty acids, triacylglycerols, Synthesis of membrane lipids: Glycerophospholipids, sphingolipids, sterols	2					
		1.3 Vitamins: Fat soluble, water soluble and coenzyme form: functions and biosynthesis	2					
		1.4 Antibiotics: Biosynthesis, mode of action, regulation, genetics, hybrid antibiotics	1					
		 1.5 Physiology of autotrophs & anaerobic respiration: autotrophic CO₂ fixation, hydrogen bacteria, methanogens. Nitrifying bacteria, sulphur bacteria, iron bacteria. Synthesis of carbohydrates in plants C₃, C₄ and CAM and bacteria 1.6 Calvin cycle and its regulation 	5					
		 1.7 Biochemistry of biological nitrogen fixation, properties of nitrogenase and its regulation, Ammonia assimilation with respect to glutamine synthetase, glutamate dehydrogenase, glutamate synthetase, their properties and regulation. 	1					
	II	Enzymology	15					
		 2.1 Discovery of enzymes, terminology, basic aspects of kinetics of enzyme catalyzed reactions: Michaelis-Menten, Lineweaver-Burk equation derivation and plots. Kinetic parameters used to compare enzyme activities. Problem solving on all subtopics 	2					
		 2.2 Mechanisms of enzyme catalysis: General acid-base, Covalent and Metal Ion catalysis 2.3 Example of enzymatic reactions: Chymotrypsin 	5					
		 2.4 Enzyme inhibition Reversible inhibition: a) Competitive inhibition b) Uncompetitive inhibition c) Mixed inhibition Irreversible inhibition and Suicide inactivators HIV enzyme inhibitors, Nerve gas catalytic antibodies Problem solving on all subtopics 	3					
		2.5 Regulatory enzymes: Allosteric enzymes- General properties, mechanism and kinetics, Two themes of	3					

	11 , • 1 ,•							
	allosteric regulations:							
	-Regulation by covalent modification,							
	-Regulation by multienzyme complexes and							
	multifunctional enzymes (the blood coagulation cascade)							
	2.6 Study of Enzyme action using X-ray crystallography,	2						
	Bioorganic Mechanism of enzyme catalyzed reactions:							
	Stereochemical aspect of inhibition by penicillin							
III	Metabolism of one & two carbon compounds	15						
	Metabolism of one carbon compounds:	4						
	3.1 Methylotrophs: Oxidation of methane, methanol,							
	methylamines. Carbon assimilation in methylotrophic							
	bacteria and yeasts.							
	3.2 Methanogens: Methanogenesis form H ₂ , CO ₂ , CH ₃ OH, HCOOH, methylamines. Energy coupling and biosynthesis in methanogenic bacteria.	3						
	Metabolism of two carbon compounds	4						
	3.3 Acetate-TCA and Glyoxylate cycle, modified citric	•						
	acid cycle, Carbon monoxide dehydrogenase pathway							
	and disproportionation to Methane. Ethanol-acetic acid bacteria.							
	3.4 Glyoxylate and glycollate-dicarboxylic acid cycle,	4						
	glycerate Pathway, beta hydroxy aspartate pathway,	-						
	Oxalate as carbon and energy source							
IV	Microbial degradation of Xenobiotics	15						
	4.1 Degradation of aromatic and alicyclic compounds-							
		6						
	important organisms, use of mixed cultures and	6						
	important organisms, use of mixed cultures and manipulation of degradative genes, common	6						
	important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG	6						
	important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic	6						
	important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds.	6						
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with 							
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance 	6						
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, 							
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics 							
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics released during combustion) 							
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics released during combustion) 4.3 Biotransformation of polycyclic aromatic 	3						
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics released during combustion) 4.3 Biotransformation of polycyclic aromatic hydrocarbons (PAHs)- Pathway for degradation of 							
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics released during combustion) 4.3 Biotransformation of polycyclic aromatic 	3						
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics released during combustion) 4.3 Biotransformation of polycyclic aromatic hydrocarbons (PAHs)- Pathway for degradation of 	3						
	 important organisms, use of mixed cultures and manipulation of degradative genes, common pathways of aromatic degradation using KEGG Database and LCMS, aerobic and anaerobic degradation of aromatic compounds. 4.2 Aromatic and heterocyclic compounds with economical and ecotoxicological significance (phenolic pesticides, pthallic acid esters, lignosulphonates, surfactants, dyes and aromatics released during combustion) 4.3 Biotransformation of polycyclic aromatic hydrocarbons (PAHs)- Pathway for degradation of Naphthalene, phenanthralene, anthracene, alicyclic 	3						

SMSMCB204- Medical Microbiology and Immunology

Learning Objectives:

- Students need to learn various principles of epidemiological studies.
- Measures of risk like mortality and morbidity frequency measures need to be discussed.
- All the various steps involved in public health surveillance need to be studied.
- An introduction to clinical research and new modern diagnostic methods is necessary.
- To study Type I, II, III and IV hypersensitive reactions as proposed by P. G. H. Gell and R. R. A. Coombs.
- To study the mechanisms of organ specific and systemic autoimmune diseases.
- To study the principles of transplantation immunology.
- To study primary and secondary immunodeficiency diseases.
- To study the malignant transformation of cells and the immune evasion mechanisms.
- To study the experimental vaccines in the developmental stages.

Learning Outcomes:

- Various epidemiological principles like herd immunity and control of epidemics will be studied. Students will also get the opportunity to develop Personal Protective Equipment (PPE) and explain its detailed use.
- Learning various measures of risks, students will learn how to do calculations on their own.
- Details of collecting, analyzing, interpreting, disseminating and interpreting data in public health surveillance will be studied.
- Students will understand clinical research trials and get the opportunity to see modern diagnostic methods like microarrays.
- Understand the mechanisms of type I, II, III and IV hypersensitivity.
- Understand the mechanism and treatment of organ specific and systemic autoimmune diseases.
- Understand the mechanism of graft rejection and the immune cells involved.
- Understand the mechanisms involved and treatment options of primary and secondary immunodeficiency diseases.
- Understand cancer initiation, promotion, and progression and the role of cancer immuno therapy.
- Understand the challenges faced in the development of newer vaccines.

COURSE CODE SMSMCB 204	UNIT	TITLE Medical Microbiology and Immunology	Number Of Lectures
	Ι	Epidemiology of Infectious Diseases	15
		1.1 Historical aspects-definition	
		1.2 Descriptive Epidemiology-aims and uses	
		1.3 Epidemiological Principles	
		a. Herd immunity	
		b. Carrier statusc. Co-evolution of host-parasite	
		d. Control of epidemics	
		i) Methods directed against reservoir	
		ii) Methods directed against transmission	
		iii) Pathogen eradication	
		1.4 Measures of Risk	
		a. Frequency measures	
		b. Morbidity frequency measures	
		c. Mortality frequency measures	
		d. Natality(birth) measures	
		e. Measures of association	
		f. Measures of public health impact	
		1.5 Public Health Surveillance	
		a. Purpose and characteristics	
		b. Identifying health problems for surveillance	
		c. Collecting data for surveillance	
		d. Analyzing and interpreting data	
		e. Disseminating data and interpretation	
		f. Evaluating and improving surveillance	
	п	Clinical Research and Modern Diagnostics	15
		2.1 Introduction to Clinical Research	
		a. What is a clinical trial, history, phases and need?	
		b. Good Clinical practice Guidelines	
		c. Ethical aspects of Clinical Research	
		d. Regulatory Requirements in clinical research	
		e. Clinical Research Methodologies, Statistics and	
		Management f Case studies	
		f. Case studies	

I		
	2.2 Modern Diagnostic Methods	
	a. Advances in Molecular and Immunological	
	Techniques	
	b. Microarrays	
	c. Advances in Fluorescence Technology	
III	Clinical immunology I	15
	3.1 Hypersensitivity	
	a. Gel and Coombs classification: Type I, II, III and	
	IV hypersensitivity.	
	3.2 Autoimmune diseases	
	a. Organ Specific Autoimmune Diseases	
	b. Systemic Autoimmune Diseases	
	c. Proposed Mechanisms for Induction of	
	Autoimmunity	
	d. Treatment of Autoimmune Diseases	
	3.3 Transplantation immunology	
	3.3 Transplantation immunology	
	a. Antigens Involved in Graft Rejection	
	b. Allorecognition	
	c. Graft Rejection-Role of APC's & Effector Cells	
	d. Graft v/s Host Diseases	
	e. Immuno Suppressive Therapies	
IV	Clinical immunology I	15
	4.1 Immunodeficiency diseases	
	a. Primary Immunodeficiency	
	b. Defects in the Complement System	
	c. Treatment Approaches for Immunodeficiency	
	d. Secondary Immunodeficiency & AIDS	
	4.2 Cancer and immune system	
	a. Cancer: Origin & Terminology	
	b. Malignant Transformation of Cells	
	c. Cancer Initiation, Promotion, and Progression	
	d. Tumor Associated Antigens	
	e. Oncogenes & Cancer Induction	
	f. Immune evasion in cancer	
	g. Cancer Immuno Therapy	
	4.3 Experimental vaccines in development	
	a. Challenges faced	
	b. HIV	

Practicals- Semester 2 SMSMCBP2

SMSMCBP201 Virology and Cell Biology-II

Sr. No	Name of the experiment
1	Visit to NIRRH or Haffkine research institute.
2	Demonstration - Egg inoculation and cultivating animal virus in embryonated
	egg.
3	Assignment on 'evolution/mutations of a human virus.'
4	Study of Mitosis.
5	Study of Meiosis.
6	Study of mold Neurospora crassa.
7	Sporulation and germination in <i>Bacillus subtilis</i> .
8	Student activity- Students will watch at least three videos on Apoptosis and
	construct a quiz based on the above.

SMSMCBP202 Genetics-II

Sr. No	Name of the experiment
1	Problems on Mendelian genetics.
2	Problems on Population genetics.
3	DNA Transformation.
4	Curing of plasmids.
5	Problems on restriction mapping.
6	Design of primer & PCR.
7	Bioinformatics practicals.
8	Online course related to any aspect of Genetics OR Workshop on
	Molecular Biology/Genetics in an institute OR One-week internship in a
	research laboratory doing research on Genetics.

SMSMCBP203 Microbial Biochemistry

Sr. No	Name of the experiment
1	Enrichment, isolation and identification of Methylobacterium.
2	Purification of an extracellular enzyme (β -amylase) by salting out and dialysis.
3	Enzyme kinetics- effect of enzyme, substrate concentration, pH, temperature and
	inhibitors on enzyme activity.
4	Demonstration of proteolytic activity.
5	Determination of glucose isomerase present in <i>Bacillus sp</i> .
6	Microbial degradation of polycyclic aromatic Hydrocarbons (PAHs) - enrichment,
	isolation and screening of bacteria.
7	PAH degradation studies.
8	Student Activity
	Student will present a research paper on microbial degradation of any one
	Xenobiotic compound highlighting the pathway, optimization and profiling of analyte.

SMSMCBP204 Medical Microbiology and Immunology

Sr. No	Name of the experiment
1	Group activity: Preparation and detailed explanation of the use of Personal
	Protective Equipment (PPE).
2	Case study for epidemiology of any diseases included in Sem I (Theory), students
	have to collect data and interpret. This can be done from Net or approaching
	NGOs like "SEHAT". Collection of data, criteria, methodology etc.
	Assignment to be submitted.
3	Students will have to submit an assignment on a clinical trial.
4	Educational visit to see either Microarrays or Advances in Fluorescence
	Technology (can go to Reliance Life Sciences Centre).
5	Problems on mortality/morbidity frequency measures.
6	Immunoelectrophoresis of human serum.
7	Major and Minor cross matching of blood.
8	Determination of ABO & Rh antibody titers.
9	SRID: For detection of immune deficiency and Complement deficiency.

References – Semester 2

SMSMCB201

- 1. Shors, Teri. 2009. Understanding viruses, 1st edition. Jones and Bartlett Publishers.
- Wagner, Edward K., Hewlett, Martinez J., Bloom, David C., and Camerini David. 2009. Basic Virology, 3rd edition. John Wiley and Sons.
- 3. Burrell, Christopher., Howard, Colin., and Murphy, Frederick. 2016. Fenner and White's Medical Virology, 5th edition. Academic Press.
- Carter, John., Saunders, Venetia., 2007. Virology Principles and Applications, 1st edition. Wiley.
- 5. Mahy, Brian WJ., and Regenmortel, Marc HV Van. 2010. Desk Encyclopedia of General Virology. Elsevier.
- 6. Dimmock, N. J., Easton, A. J., and Leppard, K. N. 2007. Introduction to Modern Virology, 6th edition. Blackwell Publishing.
- 7. Cann, Alan. 2015. Principles of Molecular Virology, 6th edition. Academic Press.
- 8. Shors, Teri. 2016. Understanding viruses, 3rd edition. Jones and Bartlett Publishers.
- 9. Karp, Gerald. 2010. Cell and Molecular Biology, 6th edition. John Wiley & Sons, Inc.
- 10. White, David. 2006. The Physiology and Biochemistry of Prokaryotes, 3rd edition. OUP.
- 11. Graumann, Peter L. (2007). Cytoskeletal Elements in Bacteria. Annu. Rev. Microbiol. 61:589-618.
- 12. Pierce, B. 2008. Genetics- a conceptual approach, 3rd edition, W.H. Freeman and company.
- 12. Tamarin, Robert H. 2002. Principles of Genetics, 7th edition. McGraw-Hill.
- 13. Russell, Peter J. 2010. iGenetics: A Molecular Approach, 3rd edition. Pearson.
- 14. Cottier, Fabien., and Muhlschlegel, Fritz A. (2011). Communication in Fungi. *International Journal of Microbiology*. Volume 2012, Article ID 351832, 9 pages.
- 15. Xue, Chaoyang., Hsueh, Yen-Ping and Heitman, Joseph. (2008). Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. *FEMS Microbiol Rev.* 32(6): 1010–1032.
- 16. Martínez-Soto, Domingo., Ruiz-Herrera, José. (2017). Functional analysis of the MAPK pathways in fungi. *Revista Iberoamericana de Micología*. 34(4): 192-202.
- 17. Pentland, Daniel R., Piper-Brown, Elliot., Mühlschlegel, Fritz A., and Gourlay, Campbell W. (2017). Ras signalling in pathogenic yeasts. *Microbial Cell*. Vol 5(2):63-74.
- 18. Lewis, Kim. (2000). Programmed Death in Bacteria. *Microbiology and molecular biology reviews*. 1092(2172):503-514.
- 19. Farrugia, Gianluca., and Balzan, Rena. (2012). Oxidative stress and programmed cell death in yeast. *Front. Oncol.*

Additional references:

1. Flint, S.J., Enquist, L.W., Racaniello, V.R., and Skalka, A.M. 2009. Principles of Virology, 3rd edition. Volume I and II. American Society for Microbiology.

- 2. Lewin, Benjamin. 2004. Genes VIII. Pearson.
- 3. Lodish, Harvey., Berk, Arnold., and Kaiser, Chris A. 2007. Molecular Cell Biology, 6th edition. W.H. Freeman& Co Ltd.
- 4. De Robertis, E.D.P. 2017. Cell and Molecular Biology, 8th edition. LWW.

SMSMCB202

- 1. Russell, Peter J. 2010. iGenetics: A Molecular Approach, 3rd edition. Pearson.
- 2. Pierce, B. 2008. Genetics- a conceptual approach, 3rd edition, W. H. Freeman and Company.
- Snustad, Peter D., Simmons, Michael J. 2003. Principles of Genetics, 3rd edition. John Wiley & Sons, Inc.
- 4. Snustad, Peter D., Simmons, Michael J. 2012. Principles of Genetics, 6th edition. John Wiley & Sons, Inc.
- 5. Weaver, Robert F. 2012. Molecular Biology, 5th edition. McGraw-Hill.
- Krane Dan E., Raymer Michael L. 2002 Fundamental Concepts of Bioinformatics, 1st edition. Benjamin / Cummings.
- 7. Attwood Teresa K., Parry-Smith David J. 1999 Introduction to Bioinformatics. 1st edition. Addison Wesley Longman Limited.
- 8. Klug William S., Cummings Michael R. 2000. Concepts of genetics. 6th Edition. Prentice Hall.

Additional references:

- 1. Lewin, Benjamin. 2004. Genes VIII. Pearson.
- 2. Lewin, Benjamin. 2007. Genes IX., Jones and Bartlett publishers.
- Snyder, Larry., Peters, Joseph. E., Henkin, Tina M., and Champness, Wendy. 2013. Molecular Genetics of bacteria, 4th edition. Wiley-Blackwell.
- 4. Tamarin, Robert H. 2002. Principles of Genetics, 7th edition. McGraw-Hill.

SMSMCB203

- 1. Principles of Biochemistry, Lehninger A.L., Cox and Nelson, 4th edition, 1994, CBS publishers and Distributors Pvt. Ltd.
- 2. The physiology and biochemistry of prokaryotes, White D., 4th edition, 2011, Oxford University Press.
- 3. Outlines of Biochemistry by Conn and Stumpf 5th edition 2006 Wiley India Edition.
- 4. Essential Biochemistry (illustrated) Pratt-Cornley 3rd edition 2013, Wiley.
- 5. Principles of Biochemistry, Voet D. and Voet J.G.,4th International student edition, 2011.
- 6. Microbial Biochemistry by GN Cohen- 2011, Springer.
- 7. Bacterial metabolism by Gottschalk, 1985, Springer- Verlag.
- 8. Biotechnology H.J. Rehm and G. Reed (ed.), Volume 6a. Biotransformations, Verlag and Chemie, 1984.
- 9. Introduction to bacterial metabolism Doelle H.W., Academic Press, 1975.

10. Microbial ecology, Atlas RM and Bartha, Addison Wesley Longman Inc. 1998.

Additional references:

- 1. Biochemistry, Berg J.M., Tymoczko J.L. and Stryer L., 7th edition, 2012, W. H. Freeman and co.
- 2. Fundamentals of Enzymology, Price N.C. and Stevens L. 3rd edition, 1999.
- 3. Biochemical calculations, Segel I.R., 2nd edition, 2004, John Wiley and Sons.
- 4. Biochemistry: The molecular Basis of Life, T. Mckee J. Mckee 6th International edition 2017, Oxford University Press.

SMSMCB204

- 1. Principles of Epidemiology in Public Health Practice. Third Edition October 2006, updated 2012.U.S. Department of Health and Human Services.
- 2. Introduction to Clinical Research by William Eardley et al. First edition 2011.Oxford University Press.
- Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology. Clin. Microbiol.Rev.2009 Oct 22(4)611-633.
- 4. Recent Advances of Fluorescent Technologies for Drug Discovery and Development. Curr. Pharm. Des.2009:15(30):3552-70.
- 5. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn.Lab. Immunol.2003Jul;10(4):506-513.
- Recent advances in molecular medicine techniques for the diagnosis, prevention and control of infectious diseases. European Journal of Clinical Microbiology. Jan 2013, 32(6).
- 7. Immunology- Kuby, 6th edition, 2006, W. H. Freeman and Company- New York.
- 8. Immunology-Essential & Fundamental edited by Sulbha Pathak & Urmi Palan-3rd edition, 2011, Central Publishing Company.
- 9. Immunology an introduction- Ian R. Tizard-Thomson, 4th edition, 2006.
- 10. Essential Immunology- Roitt's, 12th edition, 2011, Wiley- Blackwell.
- 11. The Elements of immunology- Fahim Halim Khan, 2009, Pearson Education.
- 12. Immunobiology- The immune system in health and disease, Janeway.Travers 6th ed., 2006.

A. Theory- Internal assessment 40%

40 marks

Sr.	Evaluation type	Marks
No		
1.	Test	20
	a. Choose the correct alternative- 05 marks - (any five out of eight)	
	b. Answer in one or two sentences- 05 marks - (any five out of eight)	
	c. Diagrammatically explain/Describe/Justify/Explain/ Differentiate	
	between/HWY- 10 marks – (any two out of three)	
2.	Power Point Presentation on any of the topics from the syllabus / Report writing /	15
	Assignment / Essay writing / Notes preparation	
3.	Attendance	05

B. Theory- External examination – 60%

60 marks

Semester end examination (SEE)

- The duration of the examination will be of 2.5 hours.
- The question paper will have 5 questions each of 12 marks.
- On each unit, there will be one question (subjective) and fifth one will be based on all four units (objective).
- All questions will be compulsory with internal choice within the questions.
- Question 5 will be subdivided into sub questions a, b and c.

Practical Examination: -

- There will be no internal examination for practicals.
- External (semester end practical examination): 50 Marks per paper/section

Overall Examination pattern

Semester 1

Course	SMSMCB101			SMSMCB102			SMSMCB103			SMSMCB104			Grand total
	In	Ex	Т										
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	200

Semester 2

Course	SMSMCB201			SMSMCB202			SMSMCB203			SMSMCB204			Grand total
	In	Ex	Т										
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	200