

Affiliated to the University of Mumbai

Programme: BSc Course : Life Sciences

Syllabus for the Academic Year 2023-2024 based on the National Education Policy 2020

	PROGRAMME SPECIFIC OUTCOMES
1	Students will able to understand various fundamental concepts of life science and reflect them in their day to day life
2	Student will be able to critical think and analyze any given problem scientifically
3	Students will be proficient with analytical tools and techniques of life sciences

DEPARTMENT OF LIFE SCIENCES COURSE DETAILS FOR MAJOR:

	SEMESTER I			
	Major Paper	VSC-I	VSC-II	IKS
TITLE	Fundamentals of Cell and Microbial Biology	Principle and Analytical Techniques of Biomolecules	Introductory laboratory skills and techniques in Biology	History of Forests and Agriculture in India
TYPE OF COURSE DSE/DSC	DSC	VSC	VSC	IKS
CREDITS	4	2	2	2

	SEMESTER	SEMESTER II				
	Major Paper	SSEC-I	SSEC-II	OE		
TITLE	Eukaryotic cell Biology	Science of Genetics	Bioecology	Concepts of Evolution		
TYPE OF COURSE DSE/DSC	DSC	SEC1	SEC2	OE		
CREDITS	4	2	2	2		

Programme: Science		Semester	-1		
Life Science Major					
Course Title: Fundamentals	of Cell and Microbial	Course Cod	e: SLSC111MJ		
Biology	Biology				
COURSE OBJECTIVES:					
1. Learn the basic princi	ples of microscopy and micro	biology			
2. Learn about types of r	nicroscopy to visualize microl	bial cells			
3. Understand the different	ences between prokaryotic and	d eukaryotic co	ells		
4. To understand the con	nposition of molecules within	living cells			
COURSE OUTCOMES:					
The learner will be able to :					
1. Proficiently use the mic	roscope, subsequently associa	te the appropr	iate microscopy technique		
needed to analyse the gi	iven sample.				
2. Comprehend the fundament	nentals of prokaryotic and euk	aryotic cells.			
3. Mindfully embrace the	significance of microbes in di	iseases, agricu	lture, and industry.		
4. Apply the properties of	different functional groups of	f biomolecules	and carry out selective		
organic reactions.			-		
Lectures per week (1 Lecture	is 60 minutes)		3		
Total number of Hours in a S	emester	45			
Credits			4		
Evaluation System	Summative Assessment	2 Hours	50 marks		
	Continous Assessment		50 marks		

	1	A Preview of the Cell	15 hours
UNIT 1	1.1	Visualization of the cell – Microscopy – Principle, Resolving Power and types of microscopy–Brightfield, Fluorescence, Electron microscopy – Transmission and Scanning.	3
	1.2	Types and comparison of cells – Bacteria, Archaea and Eukaryotes.	2
	1.3	Limitation on size and compartmentalization of functions.	1
	1.4	Prokaryotic cell –Structure	

		Cell wall – Gram positive and Gram negative	3
		Nucleoid; capsule/glycocalyx; flagella and	
		endospore.	1
	1.5	Fungi – Growth and reproduction – asexual and	l
	1.6	Algae and Protozoa – Structural organization and	2
	1.0	Morphological diversity.	
	1.7	Evolutionary origin of organelles and Endosymbiont	
		Hypothesis.	3
UNIT 2	2	Introduction to Microbiology	15 hours
	2.1	History of Microbiology – Spontaneous generation	1
		and Germ theory.	_
	2.2	Binary fission and cell growth.	2
	2.3	Biofilm formation.	1
			1
	2.4	Viruses, Viroids and Prions:	
		Virus–structure and life cycle of a bacterial virus	5
		(lytic and lysogenic), animal virus – DNA virus (ex.	5
		Herpes virus) RNA virus (plus and minus stranded),	
		Retrovirus and plant virus (TMV), virolds, Prions –	
	2.5	A gents of different microhial disasses	3
	2.5	Agents of different incrobial diseases.	
	2.0	Role of microorganisms in agriculture, industry, and	3
LINIT 3	3	Biomolecules	15 hours
0111 5	5	Domoteures	15 110015
	3.1	Non-carbon-containing molecules in cells:	
		a. Water- the most abundant component	
		1. Molecular structure and physico-chemical	4
		properties	
		2. Corresponding functions in cells and reasons	
		h Inorganic Ions:	
		1 Macro-elements- Na K Cl Ca P Mg S	
		2 Micro-elements – Fe Cu Zn Mn I Ni	6
		function in cells	

3.2	 Carbon-containing compounds in cells: a. Amino acids and Protein macromolecules Biological amino acids - general structure and reactions Classification of amino acids based on – biochemical nature and structure Structure-function relation in proteins. Protein structure and folding, Molecular Chaperones Primary – Quaternary structures within proteins with typical examples Protein folding chaperones and disease. c. Monosaccharide Sugars and Polysaccharide Carbohydrates Nomenclature, structure of common sugars and reactions. d. Fatty Acids and Lipids Nomenclature and structure of common lipids. a. Nucleotides and Nucleic Acid 	5
	e. Nucleotides and Nucleic Acid	
	Nomenclature and structure.	
3.3	Macromolecular synthesisa. DNA synthesis in prokaryotes.b. DNA synthesis in eukaryotes.	

Practicals for Major Paper (SLSC111MJP)

- 1. Use, care and maintenance of microscopes (discussion on standard operating procedures).
- 2. A. Observation of permanent slides under light microscope
- B. EM micrographs of bacteria and virus.
- 3. Demonstration of Fluorescence Microscopy using live biological samples.
- 4. Microbial analysis from pond water/ curd/or any other sample.
- 5. Study of bacterial motility by hanging drop technique.
- 6. Slide culture technique for observation of fungi (from pure culture/soil sample).
- 7. Water molecules and its properties (solvent, density, cohesion and adhesion, colligative properties).
- 8. Detection and localization of carbohydrates, proteins, lipids and nucleic acids in vitro and in tissues.
- 9. Origami and modeling of biochemical structures.
- 10. Extraction of DNA from onion.

ASSESSMENT DETAILS: There are two subheadings namely

Summative Assessment (SA) and Continuous Assessment (CA)

- It is mandatory for students to attain both SA and CA
- No minimum marks requirement for passing individually in either SA or CA
- However, the passing marks out of 100 will be mandatorily be calculated from SA (50 marks) and CA (50 marks)
- Students will be declared fail if the score is less than 40 out of 100
- If a student fails, the student will have to appear for a 100 marks ATKT SA paper covering the entire semester syllabus
- If a student fails to appear in the semester end SA, the student will then appear for 50 marks Additional SA paper
- Format of CA: Two CA activities, 25 marks each

REFERENCES:

- 1. Aneja K.R., Experiments in Microbiology, Plant Pathology and Biotechnology, 2017,5th Edition, *New Age InternationalPublishers*.
- **2.** Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8th Edition, *PearsonPublisher*.
- **3.** Madigan M, Martinko J., Bender K., Buckley D., Stahl D., Brock Biology of Microorganisms, 2017, 14th Edition, *Pearson Publishers*
- **4.** TortoraG.J.,FunkeB.R.,CaseC.L.,Microbiology:AnIntroduction,2016,12thEdition, *Pearson Publication*
- **5.** Willey J., Sherwood L., Woolverton C., Prescott, Harley and Klein's, Microbiology, 2008, 7th Edition, *McGraw Hill HigherEducation*
- 6. Nelson D.L. and Cox M.M., Lehninger-Principles of Biochemistry, 2017, 7thEdition, *W H Freeman & Co Publishers*.
- 7. Plummer M. and Plummer D.T., Introduction to Practical Biochemistry, 1988, 3rdEdition, *McGraw Hill Publication*
- 8. Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, *Cambridge University Press.*
- 9. Karp G, Cell Biology, 2013, 7thEdition- International Student Edition, *Wiley Publication*.
- 10. LodishH.,BerkA.,KaiserC.A.,MolecularCellBiology,2012,7thEdition, Macmillan Learning Publications.
- 11. Plopper G, Principles of Cell Biology, 2016, 2ndEdition, Jones and Bartlett Learning

Publication

Programme: Science		Semester	-1
Life Science VSC I			
Course Title: Principle and	Analytical Techniques of	Course Code	e: SVSC103
Biomolecules			
COURSE OBJECTIVES:			
1. Students will learn the	concepts of Molarity and Norm	nality.	
2. Students will be acquai	nted with different qualitative a	and quantitative	based techniques and assays
3. Students will develop t	he ability of critically learning	the concepts of	biomolecules
COURSE OUTCOMES:			
The learner will be able to :			
1. Familiarize oneself wit	h working principle of differen	t instruments us	sed in life science
2. Demonstrate the separa	tion of biomolecules using diff	ferent technique	es.
3. Make calculations relations	ted to preparation of different c	oncentration of	solutions
Lectures per week (1 Lectur	re is 60 minutes)	1	
Total number of Hours in a	Semester	30	
Credits			2
Evaluation System	Continuos Assessment	Theory	20 marks
		Practical	20 marks
	Class Participation		10 marks
	· · ·	!!	

UNIT 1	1	Fundamentals of Handling/Working of instruments and Analytic Techniques	15 hours
	1.1	Introduction of instruments, spectroscopy and photometric techniques.	2
	1.2	Concepts of Molarity and Normality.	1
	1.3	Quantitative biochemical measurements.	2
	1.4	Qualitative and quantitative analysis of biomolecules.	2
	1.5	Extraction techniques Cell lysis techniques – Physical, chemical Solvent extraction of lipids.	3
	1.6	Separation and analytical techniques 1. Precipitation	

2. Filtration	5
3. Dialysis	
4. Centrifugation	
5. Chromatography	
6. Electrophoresis	
Using the above techniques to isolate/ analyze	
particular molecules using a typical example.	

Practical of VSCI (SVSC103P)

A. Analytical Techniques

- Colorimetry:
 - a. Basic Concept of Solution Preparation:
 - i. Preparation of Simple Inorganic Salt Solutions: Molarity and Percent Solution
 - ii. Preparation of dilutions from a stock solution.
 - b. Determination of Lambda max
 - c. Verification of Beer-Lambert's law.
- pH metry:

Π.

- a. Usage and Calibration of pH meter.
- b. Making of own pH indicator papers.

B. Separation Techniques

- Separation of biomolecules using a semi permeable membrane (dialysis).
- Isoelectric Precipitation of proteins.
- Separation of the given sample using sucrose gradient.
- Separation of amino acids using paper chromatography technique.

ASSESSMENT DETAILS:

Only Continous Assessment (CA) will be conducted

- It is mandatory for students to attain both CA activities
- CA1: Test: 20 marks (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)
- CA2: Practical/Activity, as applicable: 20 marks
- Class participation (Attendance and Involvement in class activities): 10 marks
- The minimum score to pass for the course is 20 out of 50
- If a student fails to score atleast 20, the student will then appear for 40 marks ATKT CA paper (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)

REFERENCES

- 1. Nelson D.L. and Cox M.M., Lehninger-Principles of Biochemistry, 2017, 7thEdition, *W H Freeman & Co Publishers*.
- 2. Plummer M. and Plummer D.T., Introduction to Practical Biochemistry, 1988, 3rdEdition, *McGraw Hill Publication*
- Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, *Cambridge University Press*.

Programme:	Science		Semester – 1			
Life Science	VSC II					
Course Title: In	troductory l	laboratory skills and	Course Code: SVSC104			
techniques in Bio	ology					
COURSE OBJE	ECTIVES:					
1. Students w	ill learn labo	ratory discipline and good lab	practices			
2. Students w	ill be able to	reflect how microbial growth	could be contro	olled.		
3. Students w	ill acquire kr	nowledge of different paramet	ters necessary f	or optimal microbial growth,		
culturing a	nd preservati	on	5			
COURSE OUT	COMES:					
The learner will b	e able to :					
1. Gain exper	tise in labora	atory practises and journal wri	iting			
2. Elucidate tl	ne functionin	g of microscopes and reason	out why specin	nens must be stained.		
3. Perform mi	crobiologica	l techniques under sterile con	ditions.			
Lectures per wee	ek (1 Lectur	e is 60 minutes)		1		
Total number of	Hours in a S	Semester		30		
Credits				2		
Evaluation Syste	m	Continuous Assessment	Theory	20 marks		
			Practical	20 marks		
Class Participation				10 marks		
			•			
UNIT 1	1	Fundamentals of Handlin	ng/Working of	15 hours		
		instruments and Analytic Techniques				
	1 1	Laboratory Practices and	Dacia Miarahi	alagy		

	instruments and Analytic Techniques	
1.1	Laboratory Practices and Basic Microbiology	
	Laboratory discipline.	2
	Good Laboratory Practices.	
	Instrument Safety.	
		_
		5

1.2	Fundamental microbial techniques	
	1. Micrometry of biological specimen.	
	2. Sterilization of laboratory material (principle	
	of use of autoclave).	
	3. Media preparation and pouring plates.	
	4. Understanding the functioning of common	
	microbiological equipment.	
	5. Introduction to Stains and Dyes.	
	6. Staining and culturing of microbial culture.	6
1.3	Microbial growth requirements and its control	
	Requirements for growth-	
	1. Physical – Temperature, pH, Osmotic pressure	
	2. Chemical – Carbon, nitrogen, sulphur,	
	phosphorus oxygen, trace elements, growth	
	factors	
	3. Culture Media	
	4. Anaerobic growth.	
	5. Kinetics of growth	
	6. Growth curve and generation time	2
	7. Batch and continuous cultures	2
	8. Isolation of microorganisms	
	9. Preservation of microorganisms.	
1.4	Control of microbial growth	
	1. Physical	
	2. Chemical	
	3. Antimicrobial.	

Practical of VSCII (SVSC104P)

A. Introduction of Laboratory practices and Journal writing

Good Lab Practices and Writing a Science Lab Report.

- **B.** Microscopy
- Parts of Microscope
- Micrometry: Measurement of cell size under a microscope (concept of mm and µm). Example: measurement of pollen grain from different flowers, starch grains (iodine).

C. Microbiology

- Demonstration of different sterilization techniques used in the laboratory.
- Demonstration of media preparation and pouring plates.
- Microbial staining technique:
 - a. Monochrome staining of bacteria, yeast, animal cell (from cheek), plant cells (onion peel)

- b. Differential staining: Gram staining.
- Isolation of Pure Culture of Bacteria by Streak Plate Method.
- Effect of temperature on growth kinetics in yeast.
- Demonstration of AST (by disc diffusion method) and Minimum Inhibitory Concentration (MIC) for a bacterial culture.

ASSESSMENT DETAILS:

Only Continous Assessment (CA) will be conducted

- It is mandatory for students to attain both CA activities
- CA1: Test: 20 marks (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)
- CA2: Practical/Activity, as applicable: 20 marks
- Class participation (Attendance and Involvement in class activities): 10 marks
- The minimum score to pass for the course is 20 out of 50
- If a student fails to score atleast 20, the student will then appear for 40 marks ATKT CA paper (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)

REFERENCES

- 1. Aneja K.R., Experiments in Microbiology, Plant Pathology and Biotechnology, 2017,5th Edition, *New Age InternationalPublishers*.
- 2. Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8th Edition, *PearsonPublisher*.
- 3. Madigan M, Martinko J., Bender K., Buckley D., Stahl D., Brock Biology of Microorganisms, 2017, 14th Edition, *Pearson Publishers*
- 4. Reba Kanungo, Ananthanarayan and Paniker's Textbook of Microbiology,2017,10thEdition, *Universities Press Publishers*
- 5. TortoraG.J.,FunkeB.R.,CaseC.L.,Microbiology:An Introduction,2016,12thEdition, *Pearson Publication*
- 6. Willey J., Sherwood L., Woolverton C., Prescott, Harley and Klein's, Microbiology, 2008, 7th Edition, *McGraw Hill HigherEducation*

Programme: Science Life Science IKS

Semester – 1

Course Title: History of Forests and Agriculture in India Course Code: IKS106

COURSE OBJECTIVES:

Learner will be acquainted with the understanding of

- 1. Indian forest in different historical periods
- 2. Approaches towards various agriculture techniques and sustainable practices in ancient India

COURSE OUTCOMES:

The learner will be able to :

- 1. Understand the human activities that led to changes in the forest biodiversity in different historical periods
- 2. Analyze the wisdom of ancient Indian agricultural practises
- 3. Undertake socially relevant solutions in the areas of agriculture, and irrigation.

Lectures per week (1 I	Lecture is 60 minutes)	2		
Total number of Hours	s in a Semester	30		
Credits		2		
Evaluation System		Continous Assesment	40 marks	
	Graded Subject	Class Participation	10 marks	

UNIT 1	1	History of Forests in India	15 hours
	1.1	Indian Forests in different period	
		1. Ancient Period, Kautilya classification	3
		of forests	
		2. Gupta Period: history of forestry in the	
		reign of Chandra Gupta Maurya	
		3. Medieval Period	
		4. British Period	
		5. Modern Period	
	1.2	Establishment of Forest Department in India	
		1. British Imperial Forestry Service in	2
		Colonial India	2
		2. Forest department in colonial India in	
		1864 and the formulation of Indian	
		Forest Act in 1865	

	1.3	Forest policies and laws related to Indian Forest	
		Ecology	
		1. The Indian Forest Act, 1927	3
		2. National Forest Policy 1952	
		3. The Forest Conservation Act, 1980	
	1.4	Ecology of Indian Forest	
		1. Introduction to forest ecosystem	2
		2. India's biodiverse regions	
	1.5	Effect of environment and socioeconomic status	
		on forests	2
	1.6	Case studies on Indian Forestry	
		1. Thana Forests in Bombay	3
		2. Impact of British Forestry in Karnataka	
		State	
		3. The Timberlands of Assam	
		4. The forests of the Western Himalayas	
UNIT 2	2	History of Agriculture in India	15 hours
	2.1	Beginning of Agriculture in India across ages	
		1. Vedic period	
		2. Early Common Era – High Middle Ages	5
		3. Late Middle Ages – Early Modern Era.	
		4. Colonial British Era	
		5. Earliest Agrarian Settlements	
	2.2	Ancient agricultural practices	
		1. Soil classification and Conservation	
		2. Water harvesting and irrigation	_
		developments during different periods -	5
		water storage – distribution and	
		relevance to modern agriculture.	
	2.3	Farming practices	
		1. Indus Valley Civilization	
		2. Harappa and Chanhu-daro,	2
		Mohenjo-daro.	3
	2.4	Ancient farming methods of seed storage and	2

ASSESSMENT DETAILS:

Only Continous Assessment (CA) will be conducted

- It is mandatory for students to attain both CA activities
- CA1: Test: 20 marks (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)
- CA2: Practical/Activity, as applicable: 20 marks
- Class participation (Attendance and Involvement in class activities): 10 marks
- The minimum score to pass for the course is 20 out of 50
- If a student fails to score atleast 20, the student will then appear for 40 marks ATKT CA paper (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)

REFERENCES

- 1. Chaubey, O. P., Sharma, A., Prakash, R. (2014). Forest Ecology in India. India: Aavishkar Publishers, Distributors.
- 2. Forest Environment and Biodiversity Mahesh Prasad Singh, J. K. Singh, Reena Mohanka Daya Books, 2007 Biodiversity
- 3. A Forest History of India: Richard P Tucker, Publisher: SAGE Publications Published: November 2011; Copyright: 2012, ISBN: 9788132109280

Programme: Scie	nce		Semester –	- 2
Life Science Maj	or			
Course Title: Eukaryo	tic cell Biolo	gy	Course Code:	SLSC122MJ
COURSE OBJECTIV	<u>ES:</u>			
1. To make the studen	ts learn the s	structure and function of comp	oonents of eukar	yotic cell like nucleus, plasma
membrane, chloroplast and mitochondria.				
2. To make the students	s learn about	protein formation and trafficki	ing through the e	ndomembrane organelle.s
3. To make the student	s understand	processes and mechanisms of	cell division.	
COURSE OUTCOMES	S :			
The learner will be able	_ to :			
Students will be able to				
1. To differentiate b	between Euc	chromatin and Heterochroma	tin, active and	passive transport across the
membrane in anim	als and plant	S.		
2. To differentiate be	tween differe	ent cell-cell junctions and extr	acellular matrix	which contribute stability and
elasticity to the cel			• . 1 1	
3. To gain an insight	into the diffe	erent cell organelles and diseas		
Lectures per week (1 L	ecture is 60 r	minutes)	3	
Total number of Hours	<u>In a Semeste</u>	er	45	
				4
Evaluation System		Summative Assessment	2 Hours	50 marks
		Continuous Assessment		50 marks
	1	Nucleus and Cell membran	ie – Structure al	nd 15 hours
UNIT 1	1 1	1 Nucleur		
	1.1	1. Nucleus		loor 3
		• Subclure of Interphat	st nucleus - nucleos	
		model		
		inouci		

	 Euchromatin and Heterochromatin Specialized chromosomes – polytene and lampbrush chromosomes 	
1.2	Membrane – their structure and function History and models of membrane structure	2

	1.3	Transport across membranes	
		Transport processes	1
		• Simple and Facilitated Diffusion	
		• Active transport – example Na+/K+pump	3
		 Vesicular transport – Endocytosis and 	
		exocytosis, Phagocytosis	
	1.4	Cell adhesion, cell junctions and extracellular	1
		structures	
		 Cell- cell junctions – tight junctions, gap 	2
		junctions, adhesion junctions	
		• Extracellular matrix of animal cells –collagen,	
		elastin, laminins	3
	1.5	Plant cell surface – plant cell wall and plasmodesmata	
UNIT 2	2	Cell Organelles	15 hours
	2.1	Endoplasmic reticulum and ribosomes	
		• Ribosomes – structure of prokaryotic and	2
		eukaryotic ribosomes and role in protein	
		synthesis	
		• Rough ER – structure and role in protein	
		synthesis – signal peptide hypothesis	
		• Smooth ER – structure and functions (also	
		function as sarcoplasmic reticulum	
		• ER role in biosynthesis of membranes	
	2.2	Golgi Complex	
		Structural organization	2
		• Brief introduction to role of Golgi in protein	
		glycosylation and proteasome in protein	
		degradation	
	2.3	.Lysosomes	
		• Formation of lysosomes and role in digestion	
		of materials	2
		 Lysosomal storage diseases – silicosis and Tay 	2
		Sachs disease	
	2.4	Peroxisomes	
		• Function in animal and plant cells	2
		Zellweger syndrome	3
	2.5	Mitochondria	
		• Structure and role in oxidative phosphorylation	

	2.6	 in ATP synthesis Mitochondrial DNA and associated disease – LHON Plastids Types of plastids Structure of chloroplast and role in Photosynthesis Photosynthetic pigments 	3
UNIT 3	3	Cytoskeleton, cell cycle and cell division	15 nours
	3.1	 Cytoskeleton Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions. 	4
	3.2	 Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) Cancer as an example of dysregulation of cell cycle Cell Division 	6
		 Mitosis stages and cytokinesis, Metaphase chromosomes: centromere and telomere Meiosis – Stages and significance–crossing 	5

Practicals for Major Paper (SLSC122MJP)

- 1. Electron micrographs of organelles and cell junctions.
- 2. Cytogenetic analysis of onion root tip.
- 3. Chironomous Larvae- study of giant chromosome from salivary glands.
- 4. Permanent slides of meiotic stages.
- 5. Staining of striated muscle.
- 6. Plasmolysis using Tradescantia leaf.
- 7. Methyl green pyronin staining for localization of nucleic acids.

Note: Students will be continuously monitored for their active participation during lab sessions.

ASSESSMENT DETAILS:

There are two subheadings namely

Summative Assessment (SA) and Continous Assessment (CA)

- It is mandatory for students to attain both SA and CA
- No minimum marks requirement for passing individually in either SA or CA
- However, the passing marks out of 100 will be mandatorily be calculated from SA (50 marks) and CA (50 marks)
- Students will be declared fail if score is less than 40 out of 100
- If a student fails, the student will have to appear for a 100 marks ATKT SA paper covering the entire semester syllabus
- If a student fails to appear in the semester end SA, the student will then appear for 50 marks Additional SA paper
- Format of CA: Two CA activities, 25 marks each

REFERENCES:

- 1. Brooker, Widmaier, Graham, Stiling, Biology, 2016, 4th edition, *McGraw-Hill Education Publication*
- 2. Campbell, Reece, Urry, Cain, Wasserman, Minorsky, Jackson, Biology, 2016, 11thEdition, *Pearson Publication*
- 3. Freeman S., Biological Science, 2004, Benjamin Cummings Publishing Company.
- 4. Hyde D. R., Genetics and Molecular Biology: With Fundamentals of Biostatistics, 2010, 1st Edition, *McGraw Hill Education Publication*
- 5. Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P.,

Molecular Biology of the Cell, 2007 or 2014, Science Publications th th Edition or6 Edition, Garland

- 6. Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8thEdition, Pearson Publisher
- 7. Karp G, Cell Biology, 2013, 7thEdition- International Student Edition, Wiley Publication
- 8. LodishH.,BerkA.,KaiserC.A.,MolecularCellBiology,2012,7thEdition, Macmillan Learning Publications.
- 9. Plopper G, Principles of Cell Biology, 2016, 2ndEdition, Jones and Bartlett Learning Publication.
- 10. Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, Cambridge University Press

Programme: Science	Semester	- 2	
Life Science SSEC I			
Course Title: Science of Genetics	Course Code	: SSEC203	
COURSE OBJECTIVES:			
Course Objectives			
1. To make the students un	iderstand the history and basics	s of modern get	netics.
2. To familiarize the studen	nts with the laws of genetics an	nd its modificat	tions.
3. To make the students aw	vare of chromosomal anomalie	es.	
4. To make the students rea	alize the applications of geneti	CS.	
COURSE OUTCOMES:			
The learner will be able to :			
1. Achieve an understandi	ng of classical genetics.		
2. Understand the process	of gene interactions.		
3. Identify genetic disorde	ers.		
Lectures per week (1 Lecture is 60 r	minutes)		1
Total number of Hours in a Semeste	er	30	
Credits			2
Evaluation System	Continuous Assessment	ontinuous Assessment Theory 20 marks	
		Practical	20 marks
			15 1

			15 hours
UNIT 1	1.1	Overview and history of Modern Genetics, Chromosome Theory of Inheritance-Sutton-Boveri, Thomas Hunt Morgan's Experiment.	2
	1.2	Mendelian inheritance	
		Herman's experiment on X ray induced mutations-	
		Concept of homozygous, heterozygous, phenotype, genotype, alleles; Mendel's Laws and Mono and Dihybrid ratios with problems, chi square - for 3:1 and 1:1 ratio. Use sickle cell anaemia as an example to explain the concept of gene	4

1.3	Modification of Mendel's laws - Gene interactions: incomplete dominance, co-dominance; Multiple genes, Multiple alleles: Blood group, Epistasis, Linkage, Sex limited, sexinfluenced.	4
1.4	 Chromosomal anomalies– Structural: deletion, duplication, inversion, translocation. Numerical: euploidy and aneuploidy (e.g. Downs, Turners, Klienfelter's, Cri-du-chat). 	2
1.5	Applications - scope of genetics in Healthcare, therapeutics, evolutionary biology, Biotechnology. (dominant and recessive).	

Practical VSC I Paper (SSEC203P)

- 1. Pairing game to produce a Punnet square.
- 2. Collection of blood group information from family and construction of pedigree charts.
- 3. Human Karyotyping- Normal and Abnormal (Numerical and Structural).
- 4. Observation of Barr body from buccal smear.
- 5. Study of polyploidy in onion root tip by colchicine treatment.
- 6. Sex-linked inheritance in Drosophila melanogaster.
- 7. Identification of adult zebrafish mutants.

ASSESSMENT DETAILS:

Only Continous Assessment (CA) will be conducted

- It is mandatory for students to attain both CA activities
- CA1: Test: 20 marks (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)
- CA2: Practical/Activity, as applicable: 20 marks
- Class participation (Attendance and Involvement in class activities): 10 marks
- The minimum score to pass for the course is 20 out of 50
- If a student fails to score atleast 20, the student will then appear for 40 marks ATKT CA paper (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)

REFERENCES:

- 1. Brooker, Widmaier, Graham, Stiling, Biology, 2016, 4th edition, *McGraw-Hill Education Publication*
- 2. Campbell, Reece, Urry, Cain, Wasserman, Minorsky, Jackson, Biology, 2016, 11thEdition, *Pearson Publication*
- 3. Freeman S., Biological Science, 2004, Benjamin Cummings Publishing Company.
- 4. Hyde D. R., Genetics and Molecular Biology: With Fundamentals of Biostatistics, 2010, 1st Edition, *McGraw Hill Education Publication*
- 5. Russelle P., *iGenetics*: A Molecular Approach, 2010, 3rdEdition, *Pearson Benjamin Cummings Publications*.
- 6. Simon E.J., Biology: The Core, 2016, 2nd Edition, Pearson Publication
- 7. Ward P., Lamarck's Revenge: How Epigenetics Is Revolutionizing Our Understanding of Evolution's Past and Present, 2018, *Bloomsburg publishing*.

Programme: Science	Semester – 2			
Life Science SSEC II				
Course Title: Bioecology		Course Code: SSEC204		
COURSE OBJECTIVES:				
CO 1 :To familiarize the students with	ith the influence of the environ	nment on the sur	rvival of organisms	
CO 2 : To introduce students with co	omponents of ecology.			
CO 3: To acquaint the students with	h various species interactions.			
COURSE OUTCOMES:				
The learner will be able to :				
LO 1 : achieve an understanding o	f the functioning of ecosystem	18.		
LO 2 : identify elements of an eco	system.			
LO 3 : delineate various forms of	positive and negative species i	nteractions		
Lectures per week (1 Lecture is 60 n	ninutes)		1	
Total number of Hours in a Semeste	er	30		
Credits	2			
Evaluation System	Continuous Assessment	Theory	20 marks	
		Practical	20 marks	

			15 hours
	1.1	Organism and its environment: Distribution and	
UNIT 1		abundance of Organisms, Importance of carbon-based	5
		life. Concept of Ecosystem.	
	1.2	Biotic Environment: Population, population density,	
		Reproduction, Population growth (Natality, Mortality)	5
		Extinction of Population.	5
	1.3	Interspecific and Intraspecific Population Regulation:	
		Competition, Dispersal, Territoriality, Predation.	5
		(Lotka-Volterra model), Parasitism, Mutualism.	

Practical of VSC II SSEC204P

- 1. Construction of a fold scope and biodiversity analysis.
- 2. Adaptive radiation using
 - a. Darwin finches
 - b. Mouthparts in insects- mosquitoes, houseflies and cockroaches.
- 3. Animal Biodiversity:
 - a. Part I: Classification of Animals -Invertebrates.
 - b. Part II: Classification of Animals-Vertebrates.
 - c. Digital recording and detailed classification of one animal from campus/ local environment
- 4. To estimate the basal area of trees around Sophia College campus.
- 5. Study of Ecological Adaptations in Plants.

ASSESSMENT DETAILS:

Only Continous Assessment (CA) will be conducted

- It is mandatory for students to attain both CA activities
- CA1: Test: 20 marks (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)
- CA2: Practical/Activity, as applicable: 20 marks
- Class participation (Attendance and Involvement in class activities): 10 marks
- The minimum score to pass for the course is 20 out of 50
- If a student fails to score atleast 20, the student will then appear for 40 marks ATKT CA paper (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)

REFERENCES:

- 1. Brooker, Widmaier, Graham, Stiling, Biology, 2016, 4th edition, *McGraw-Hill Education Publication*
- 2. Campbell, Reece, Urry, Cain, Wasserman, Minorsky, Jackson, Biology, 2016, 11thEdition, *Pearson Publication*
- 3. Freeman S., Biological Science, 2004, Benjamin Cummings Publishing Company.
- 4. Hyde D. R., Genetics and Molecular Biology: With Fundamentals of Biostatistics, 2010, 1st Edition, *McGraw Hill Education Publication*
- 5. Russelle P., *iGenetics*: A Molecular Approach, 2010, 3rdEdition, *Pearson Benjamin Cummings Publications*.
- 6. Simon E.J., Biology: The Core, 2016, 2nd Edition, Pearson Publication
- 7. Ward P., Lamarck's Revenge: How Epigenetics Is Revolutionizing Our Understanding of Evolution's Past and Present, 2018, *Bloomsburg publishing*.

Programme: Science		Semester – 2				
Life Science Open Elective	2					
Course Title: Concepts of Evolution	n	Course Code:				
COURSE OBJECTIVES:						
1. To make the students understan	d the history of evolutio	n.				
2. To familiarize the students about the theories of evolution.						
3. To introduce students with with evidences of origin of life and evolution.						
COURSE OUTCOMES:						
The learner will be able to :						
1. Achieve an understanding of conceptual arguments for evolution.						
2. Understand the process of evolution						
3. Delineate the evidences regarding the major events in the evolutionary timescale						
Lectures per week (1 Lecture is 60 minutes)		1				
Total number of Hours in a Semester		30				
Credits		2				
Evaluation System	Continuous	Theory	40 marks			
	Assessment	Class	10 marks			
		Participation				

L

		Theories of Evolution	15 hours	
	1.1	Theories of Origin of Life		
UNIT 1		a. Spontaneous generation Vs. Biogenesis, other		
		theories (special creation/steady state /Cosmozoan theory)		
	b. Biochemical evolution (Alexander Oparin and Stanley Miller)			
	1.2 Lamarckian Evolution			
	1.3	Darwinism- concepts of variation, adaptation, struggle, fitness and		
		natural selection, spontaneity of mutations		
		(Example: Peppered moth evolution)		
	1.4 Conceptual arguments for evolution by Natural Selection given by			
		Charles Darwin and Alfred Wallace		
UNIT 2		Evidences of Evolution	15 hours	
	2.1	Evidences of evolution- homologous, anatomical, geographical,	7.5	
		biochemical, fossil- formation, types of fossils, fossil records and		
		living fossils		

2.2	Evolutionary history: The evolutionary time scale; eras, periods and	7.5
	epochs; major events in the evolutionary timescale	

ASSESSMENT DETAILS:

Only Continous Assessment (CA) will be conducted

- It is mandatory for students to attain both CA activities
- CA1: Test: 20 marks (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)
- CA2: Practical/Activity, as applicable: 20 marks
- Class participation (Attendance and Involvement in class activities): 10 marks
- The minimum score to pass for the course is 20 out of 50
- If a student fails to score atleast 20, the student will then appear for 40 marks ATKT CA paper (Duration for answering the test between 30 to 45 minutes depending on the type/level of difficulty)

REFERENCES

- 1. Lamarck's Revenge: How Epigenetics Is Revolutionizing Our Understanding of Evolution's Past and Present, Ward P. (2018), Bloomsburg Publishing.
- 2. Strickberger's Evolution, B. Hall and B. Hallgrimsson. 4th Edition (2008). Jones andBartlett.
- **3**. Remarkable Creatures: Epic Adventures in Search of the Origin of Species, Sean B. Carrol,(2009), MarinerBooks.