

SOPHIA COLLEGE

(AUTONOMOUS)

Affiliated to the University of Mumbai

Syllabus for Semesters I to II

Program: B.Sc.

Course: Life Sciences

(Choice Based Credit System with effect from the year 2022-23)

SOPHIA COLLEGE (AUTONOMOUS)

F. Y. B.Sc. Life Science Syllabus (Choice based Credit and Grading System)

Academic year 2022- 2023

SEMESTER I

Course code	Unit	Topic headings	Credits	L / week
Paper I	Cell a	Cell and Microbial Biology		
SBSLSC101	1	A Preview of the Cell	4	15
	2	Introduction to Microbiology		15
	3	Microbial growth and its control		15
SBSLSCP101		Practical	2	
Paper II	Biom	olecules and separation techniques		
SBSLSC102	1	Biomolecules	4	15
	2	Molecular Biology		15
	3	Techniques		15
SBSLSCP102		Practical	2	

SOPHIA COLLEGE (AUTONOMOUS)

F. Y. B.Sc. Life Science Syllabus (Choice based Credit and Grading System)

Academic year 2022- 2023

Course code	Unit	Topic headings	Credits	L / week
		1 8		
Paper I	Euka	ryotic cell biology		
SBSLSC201	1	Nucleus and Cell membrane – Structure and function	4	15
	2	Cell Organelles		15
	3	Cytoskeleton, cell cycle and cell division		15
SBSLSCP201		Practical	2	
Paper II	Classi	ical Genetics, Evolution and Ecology		
SBSLSC202	1	Genetics- I	4	15
	2	Genetics-II		15
	3	Evolution and Ecology		15
SBSLSCP202		Practical	2	

SEMESTER II

SEMESTER I COURSE CODE: SBSLSC101 PAPER –I CELL AND MICROBIAL BIOLOGY

Course Objectives

CO1: Introduce students to basics of microscopy, types of microscopes to visualize microbial cells, microorganisms.

CO2: Make the students learn about diverse microbes, microbial diversity, the cell wall structure and its propagation

CO3: Introduce students to parameters of microbial growth and conditions for their control

Course Outcomes

Student will be able to

LO1: differentiate between different microscopic methods to observe samples

LO2: classify microbes on their appearance

LO3: understand the importance of the components for the growth of bacteria in culture media and also about mechanisms that inhibit their growth

Paper I	Cell a	nd Microbial Biology	Credits: 4
Course code	Unit	Topic headings	L / week
SBSLSC101	1	A Preview of the Cell	15
		 Visualization of the cell – Microscopy – Principle, Resolving Power and types of microscopy– Brightfield, Fluorescence, Electron 	3
		microscopy –Transmission and Scanning 2. Types and comparison of cells – Bacteria, Archaea and Eukaryotes	2
		3. Limitation on size and compartmentalization of functions	1
		 4. Evolutionary origin of organelles and Endosymbiont Hypothesis 	2
		5. Overview of Eukaryotic organelles	2
		 6. History of Microbiology – Spontaneous generation and Germ theory 	2
		7. Role of microorganisms in agriculture, industry and medicine	3

SBSLSC101	2	Introduction to Microbiology	15
		 Viruses, Viroids and Prions: Virus–structure and life cycle of a bacterial virus (lytic and lysogenic), animal virus – DNA virus (ex. Herpes virus) RNA virus (plus and minus stranded), Retrovirus and plant virus (TMV) Viroids, Prions – e.g. scrapie Prokaryotic cell –Structure 	5
		 Cell wall – Gram positive and Gram negative Nucleoid; capsule / glycocalyx; flagella and endospore 3. Fungi – Growth and reproduction – asexual and sexual 4. Algae – Structural organization 5. Protozoa – Morphological diversity 	4 2 2 2
SBSLSC101	3	Microbial growth and its control	15
		 Requirements for growth– Physical – Temperature, pH, Osmotic pressure • Chemical – Carbon, nitrogen, sulphur, phosphorus, oxygen, trace elements, growth factors Biofilm formation Culture Media Anaerobic growth Kinetics of growth Binary fission and cell growth Growth curve and generation time Batch and continuous cultures Isolation of microorganisms Preservation of microorganism Control of microbial growth Physical Chemical 	5 6 4
		Antimicrobial	
SBSLSCP101	Pract	ical	Credits : 2
	2. B 3. N and flov 4. In	Writing a science lab report. Bright field microscopy of stained and unstained samples Measurement of cell size under microscope (concept of mm μm). Example: measurement of pollen grain from different vers, starch grains (iodine) from different food sources. ntroduction to Stains and Dyes Monochrome staining of bacteria, animal cell (from cheek), plant cell (onion peel)	

6. De use o 7. SI 8. De Inhit 9. Iso 10. C enco skill, think Note:	ficrobial staining technique: Gram staining; cell wall staining bemonstration of Sterilization of laboratory material(principle of of autoclave), media preparation and pouring plates. Blide culture technique for observation of fungi bemonstration of AST (by disc diffusion method) and Minimum bitory Concentration (MIC) for a bacterial culture solation of Pure Culture of Bacteria by Streak Plate Method Open ended project/ course based research projects- To burage development of better reading strategies, comprehension l, learner centered approach, problem based learning, reflective king. Students will be continuously monitored for their we participation during lab sessions.	
--	--	--

Reference Books:

- Aneja K.R., Experiments in Microbiology, Plant Pathology and Biotechnology, 2017,5th Edition, *New Age InternationalPublishers*.
- Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8th Edition, *PearsonPublisher*.
- Madigan M, Martinko J., Bender K., Buckley D., Stahl D., Brock Biology of Microorganisms, 2017, 14th Edition, *Pearson Publishers*
- □ Reba Kanungo, Ananthanarayan and Paniker's Textbook of Microbiology,2017,10thEdition, *Universities Press Publishers*
- □ TortoraG.J.,FunkeB.R.,CaseC.L.,Microbiology:AnIntroduction,2016,12thEdition, *Pearson Publication*
- □ Willey J., Sherwood L., Woolverton C., Prescott, Harley and Klein's, Microbiology, 2008, 7th Edition, *McGraw Hill HigherEducatio*

SEMESTER I COURSE CODE: SBSLSC102 PAPER –II BIOMOLECULES AND SEPARATION TECHNIQUES

Course objectives

CO 1 : To introduce the students with biological molecules of living cells .

CO 2 : To familiarize students with process of DNA synthesis

CO 3 : To introduce students with extraction, separation and analytical techniques

Course outcomes

Students will be able to

LO 1 : identify the biomolecules involved in living cells.

LO 2 : understand DNA synthesis process

LO 3 : analyze the techniques involved in extraction and separation techniques.

Paper II	Biomo	plecules and separation techniques	Credits: 4
Course code	Unit	Topic headings	L / week
SBSLSC102	1	Biomolecules	15
		 1.Non-carbon-containing molecules in cells: a. Water- the most abundant component Molecular structure and physico-chemical properties 	2
		 corresponding functions in cells and reasons for it being the basis of life b. Inorganic Ions: 	1
		 Macro-elements- Na, K, Cl, Ca, P, Mg, S Micro-elements – Fe, Cu Zn, Mn, I, Ni function in cells 	
		 2. Carbon-containing components in cells: a. Amino acids and Protein macromolecules biological amino acids - general structure and reactions 	3
		 classification of amino acids based on – biochemical nature and structure structure-function relation in proteins 	2
		 b. Protein structure and folding, Molecular Chaperones • Primary – Quaternary structures within proteins with typical examples protein folding chaperones and disease 	2
		 protein folding chaperones and disease c. Monosaccharide Sugars and Polysaccharide Carbohydrates Nomenclature, structure of common sugars and reactions 	2
		d. Fatty Acids and Lipids	2
		 Nomenclature and structure of common lipids e. Nucleotides and Nucleic Acid Macromolecules Nomenclature and structure 	3
		Nomenclature and structure	

SBSLSC102	2	 Molecular Biology 1. Molecular genetics: Early experiments that defined the nature of the gene (Griffith's, Avery's and Hershey's Experiments) Concept of the gene- a structural unit of coding Chromatin structure and packaging 2. Macromolecular synthesis: Concept of macromolecules DNA synthesis in prokaryotes DNA synthesis in eukaryotes 	15 9 6
SBSLSC102	3	Techniques 1. Extraction techniques • Cell lysis techniques – Physical, chemical • Solvent extraction of lipids 2. Separation and analytical techniques • Precipitation • Filtration • Dialysis • Centrifugation • Chromatography • Electrophoresis Using the above techniques to isolate/ analyze particular molecule using a typical example	15 3 12
SBSLSCP102	prac 2. So 3. W 4. pH 5. Co	 ical introduction to lab discipline and good laboratory tices. olution making: a. Preparation of solutions of a given chemical compound b. Preparation of dilutions from a stock solution Vater molecules and its properties (solvent, density, cohesion and adhesion, colligative properties) H and its usage: a. pH meter b. Making of own pH indicator papers olorimetry: a. Wavelength of maximum absorbance b. Verification of Beer-Lambert's law tudy of separation techniques: a. Dialysis b. Isoelectric Precipitation of proteins c. Density gradient centrifugation 	Credits : 2

and m 8. Detection technique 9. Origan 10. Extra 11. Open encou	ion and localization of carbohydrates, proteins, lipids ucleic acids in vitro and in tissues. ion of amino acids using chromatography in and modeling of biochemical structures ction of DNA from onion ended project/ Course- based research project: To trage small group discussions and problem solving dents will be continuously monitored for their ticipation during lab sessions.
---	--

Reference Books:

Nelson D.L. and Cox M.M., Lehninger-Principles of Biochemistry, 2017, 7^aEdition, *W H Freeman & Co Publishers*. Plummer M. and Plummer D.T., Introduction to Practical Biochemistry, 1988, 3rdEdition, *McGraw Hill Publication* Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, *Cambridge University Press*.

SEMESTER II COURSE CODE: SBSLSC201 PAPER –I EUKARYOTIC CELL BIOLOGY

Course Objectives

CO1: Make the students learn the structure and function of components of eukaryotic cell like nucleus, plasma membrane, chloroplast and mitochondria

CO2: Make the students learn about protein formation and trafficking through the endomembrane organelles

CO3: Make the students understand processes and mechanism of cell division

Course Outcomes

Students will be able to

LO1:differentiate between Euchromatin and Heterochromatin, active and passive transport across the membrane in animals and plants

LO2:differentiate between different cell-cell junctions and extracellular matrix which contribute stability and elasticity to the cell

LO3: gain an insight into the different cell organelles and diseases associated due to their malfunctions

Paper I	Euka	ryotic Cell Biology	Credits: 4
Course code	Unit	Topic headings	L / week
SBSLSC201	1	Nucleus and Cell membrane – Structure and function 1. Nucleus	15
		 Structure of Interphase nucleus - nuclear membrane, nucleolus, nucleosome model Euchromatin and Heterochromatin 	5
		 Specialized chromosomes – polytene and lampbrush chromosomes 	2
		 Membrane – their structure and function History and models of membrane structure 	4
		3. Transport across membranes	
		 Transport processes Simple and Facilitated Diffusion Active transport - evenue lo No / /K + nume 	3
		 Active transport – example Na+/K+pump Vesicular transport – Endocytosis and exocytosis, Phagocytosis 	5
		 Cell adhesion, cell junctions and extracellular structures • Cell- cell junctions – tight junctions, gap junctions, adhesion junctions 	1
		 Extracellular matrix of animal cells –collagen, elastin, laminins 	
		5. Plant cell surface – plant cell wall and plasmodesmata	

SBSLSC201	2	Cell Organelles	15
		1. Endoplasmic reticulum and ribosomes	3
		• Ribosomes – structure of prokaryotic and	
		eukaryotic ribosomes and role in protein	
		synthesis	
		• Rough ER – structure and role in protein	
		synthesis – signal peptide hypothesis	
		• Smooth ER – structure and functions(also	
		function as sarcoplasmic reticulum	2
		• ER role in biosynthesis of membranes	
		2. Golgi Complex	
		• Structural organization	
		Brief introduction to role of Golgi in protein	
		glycosylation and proteasome in protein	
		degradation	
		3. Lysosomes	2
		• Formation of lysosomes and role in digestion of materials	
		 Lysosomal storage diseases – silicosis and Tay Sachs disease 	
		4. Peroxisomes	2
		 Function in animal and plant cells 	_
		Zellweger syndrome	
		5. Mitochondria	
		 Structure and role in oxidative 	3
		phosphorylation in ATP synthesis	_
		 Mitochondrial DNA and associated disease – 	
		LHON	
		6. Plastids	3
		Types of plastids	
		 Structure of chloroplast and role in 	
		Photosynthesis	
		 Photosynthetic pigments 	
SBSLSC201	3	Cytoskeleton, cell cycle and cell division	15
		1.Cytoskeleton	5
		Types of cytoskeletal elements	
		 Microtubules – Structure and role in spindle 	
		formation and cilia/ flagella; microtubule motor proteins	
		• Microfilaments – Structure and role in musclecontraction	
		and motility (migration via lamellipodia/amoeboid	
		movement streaming)	
		• Intermediate filament – Structure and functions	
		2. Cell cycle	
		Cell cycle stages	
		• Regulation of Cell cycle (in brief-role of	
		cyclins and Cdks)	4

	 Cancer as an example of dysregulation of cell cycle Cell Division Mitosis stages and cytokinesis, metaphase chromosome: centromere and Meiosis – Stages and significance- cross over. 	5
SBSLSCP201	Practical	Credits : 2
	 Electron micrographs of organelles and junctions Barr body from buccal smear Cytoplasmic streaming in plant cells Mitosis from onion root tip Permanent slides of meiotic stages Staining of striated muscle Plasmolysis using Tradescantia leaf Methyl green pyronin staining for localization of nucleic acids Note: Students will be continuously monitored for their active	
	Note: Students will be continuously monitored for their active participation during lab sessions.	

Reference Books:

Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P., Molecular Biology of the Cell, 2007 or Edition or6 Edition, *Garland* 2014, 5 *Science Publications*

Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8thEdition, *Pearson Publisher*

Karp G, Cell Biology, 2013, 7thEdition- International Student Edition, *Wiley Publication*.

LodishH.,BerkA.,KaiserC.A.,MolecularCellBiology,2012,7thEdition, *Macmillan Learning Publications*.

Plopper G, Principles of Cell Biology, 2016, 2ndEdition, *Jones and Bartlett Learning Publication*.

Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, *Cambridge University Press*.

SEMESTER II COURSE CODE: SBSLSC202 PAPER –II CLASSICAL GENETICS, ECOLOGY AND EVOLUTION

Course Objectives

CO 1 : To make the students understand the history and basics of modern genetics.

- CO 2 : To familiarize the students about the influence of the environment on survival of organism
- CO 3 : To introduce students with theories on the origin of life and evolution.

Course Outcomes:

Students will be able to

- LO 1 : achieve an understanding of classical genetics.
- LO 2 : identify genetic disorders.
- LO 3 : understand the process of evolution

Paper II	Classi	cal Genetics, Evolution and Ecology	
Course code	Unit	Topic headings	L / week
SBSLSC202	1	Genetics	15
		1. Science of Genetics – Overview and history of Modern Genetics, Chromosome Theory of	3
		Inheritance-Sutton-Boveri, Thomas Hunt Morgan's	
		Experiment	4
		2. Mendelian inheritance Herman's experiment on X ray induced mutations- Concept of homozygous,	4
		heterozygous, phenotype, genotype, alleles;	
		Mendel's Laws and Mono and Dihybrid ratios with problems, chi square - for 3:1 and 1:1 ratio. Use	3
		sickle cell anaemia as an example to explain the	5
		concept ofgene	
		3. Modification of Mendel's laws - Gene interactions:	
		incomplete dominance, co-dominance; Multiple genes, Multiple alleles: Blood group, Epistasis,	
		Linkage, Sex limited, sexinfluenced.	3
		4. Non-Mendelian inheritance - Evidences for	
		Cytoplasmic factors, cytoplasmic inheritance,	
		extranuclear inheritance (mitochondrial, chloroplast), non-chromosomal inheritance,	2
		maternal inheritance, uniparentalinheritance.	2
		5. Pedigree analysis - Symbols of Pedigree, Pedigrees	
		of Sex-linked and Autosomal (dominant and recessive).	

SBSLSC202	2	Genetics	15
	-	1. Allelic Variation and Gene function - Non	
		Epistatic inter-allelic genetic interactions,	5
		Atavism/Reversion, Penetrance (complete and	
		incomplete), Expressivity, Pleiotropism.	
		2. Chromosomal anomalies–	
		Structural: deletion, duplication, inversion,	
		translocation.	
		Numerical: euploidy and aneuploidy (e.g.	4
		Downs, Turners, Klienfelter's, Cri-du-chat).	
		3. Applications - scope of genetics in	
		Healthcare therapeutics, evolutionary biology, Biotechnology.	
		4. Branches of genetics.	2
			2
SBSLSC202	3	Ecology and Evolution	15
	-	1. Organism and its environment: Distribution and	
		abundance of Organisms, Importance of carbon-	
		based life. Concept of Ecosystem.	3
		2. Biotic Environment: Population, population density,	3
		Reproduction, Population growth (Natality,	5
		Mortality) Extinction of Population.	
		3. Interspecific and Intraspecific Population Regulation:	4
		Competition, Dispersal, Territoriality, Predation.	4
		(Lotka-Volterra model), Parasitism, Mutualism.	
		4. Theories of Origin ofLife	4
		a. Spontaneous generation Vs. Biogenesis, other	
		theories (special creation/steady state	
		/Cosmozoan theory)	
		b. Biochemical evolution (Alexander Oparin	
		and Stanley Miller)	
		5. Lamarkian Evolution	1

SBSLSCP202	Practical	Credits : 2
	1. Pairing game to produce a Punnet square.	
	2. Meiosis from <i>Tradescantia</i> (demonstration/Photograph)	
	3. Study of bacterial motility by Hanging drop technique	
	4. Collection of blood group information from family and	
	construction of pedigree charts	
	5. Evolution card games	
	6. Adaptive radiation using	
	a. Darwin finches	
	b. Mouth parts in insects- mosquito,	
	housefly and cockroach.	
	7. Animal Biodiversity:	
	a. Part I: Classification of Animals –Invertebrates b. Part	
	II: Classification of Animals–Vertebrates c. Digital	
	recording and detailed classification of one animal from	
	campus/ local environment	
	8. Biostatistics:	
	a) Purpose of Biostatistics: Data collection, Discrete and	
	continuous variables, qualitative and quantitative b) Study of Class Intervals and calculation of	
	frequency, Representation – tabular and graphical– line	
	graph, frequency curve, Ogive curve, histogram and pie	
	diagram (also represented using Excel)	
	(c) Measures of central tendency – mean, median, mode and	
	standard deviation,	
	d) Box-Whisker plot.	
	9. Perform a search on any one topic using PubMed, download	
	about ten abstracts and prepare a summary of the literature.	
	10. Field Visit and Report.	
	Note: Students will be continuously monitored for their	
	active participation during lab sessions.	

<u>Note: All practicals in each course in both semesters have to be understood in terms of</u> <u>Instrumentation, Technique, Concept and Relevance</u> <u>or whichever may be applicable</u>

Reference Books:

Brooker, Widmaier, Graham, Stiling, Biology, 2016, 4th edition, *McGraw-Hill Education Publication*Campbell, Reece, Urry, Cain, Wasserman, Minorsky, Jackson, Biology, 2016, 11thEdition, *Pearson Publication*Freeman S., Biological Science, 2004, Benjamin Cummings Publishing Company.
Hyde D. R., Genetics and Molecular Biology: With Fundamentals of Biostatistics, 2010, 1st Edition, *McGraw Hill Education Publication*Russelle P., *iGenetics*: A Molecular Approach, 2010, 3rdEdition, *Pearson*

Benjamin Cummings Publications.

Simon E.J., Biology: The Core, 2016, 2nd Edition, Pearson Publication.Ward P., Lamarck's Revenge: HowRevolutionizing Epigenetics IsOur Understanding of Evolution's Past and Present, 2018, Bloomsburgpublishing.