

SOPHIA COLLEGE

(AUTONOMOUS)

Affiliated to the University of Mumbai

Syllabus for Semesters I to II

Program: B.Sc.

Course: Life Sciences

(Choice Based Credit System with effect from the year 2022-23)

SOPHIA COLLEGE (AUTONOMOUS)

F. Y. B.Sc. Life Science Syllabus (Choice based Credit and Grading System)

Academic year 2022- 2023

SEMESTER I

Course code	Unit	Topic headings	Credits	L / week
Paper I	Cell ar	nd Microbial Biology		
	1	A Preview of the Cell		15
SBSLSC101	2	Introduction to Microbiology	4	15
	3	Microbial growth and its control		15
SBSLSCP101		Practical	2	
Paper II	Biomo	lecules and separation techniques		
	1	Biomolecules		15
SBSLSC102	2	Molecular Biology	4	15
	3	Techniques		15
SBSLSCP102		Practical	2	

SOPHIA COLLEGE (AUTONOMOUS)

F. Y. B.Sc. Life Science Syllabus (Choice based Credit and Grading System)

Academic year 2022- 2023

SEMESTER II

Course code	Unit	Topic headings	Credits	L / week
Paper I	Eukar	Eukaryotic cell biology		
SBSLSC201	1	Nucleus and Cell membrane – Structure and function		15
505150-01	2	Cell Organelles	4	15
	3	Cytoskeleton, cell cycle and cell division		15
SBSLSCP201		Practical	2	
Paper II	Classical Genetics, Evolution and Ecology			
	1	Genetics- I		15
SBSLSC202	2	Genetics-II	4	15
	3	Evolution and Ecology		15
SBSLSCP202		Practical	2	

SEMESTER I COURSE CODE: SBSLSC101 PAPER –I CELL AND MICROBIAL BIOLOGY

Learning Objectives:

- Learn the basic principles of microbiology
- Learn about types of microscopy to visualize microbial cells
- Understand the differences between prokaryotic and eukaryotic cells
- Study the different types of microorganisms
- Learn about microbial growth and its control

Paper I	Cell ar	nd Microbial Biology	Credits: 4
Course code	Unit	Topic headings	L / week
SBSLSC101	1	A Preview of the Cell	15
		 Visualization of the cell – Microscopy – Principle, Resolving Power and types of microscopy–Brightfield, Fluorescence, Electron 	3
		 microscopy –Transmission and Scanning 2. Types and comparison of cells – Bacteria, Archaea and Eukaryotes 	2
		 Limitation on size and compartmentalization of functions 	1
		 4. Evolutionary origin of organelles and Endosymbiont Hypothesis 	2
		5. Overview of Eukaryotic organelles	2
		6. History of Microbiology – Spontaneous generation and	2
		Germ theory	
		 Role of microorganisms in agriculture, industry and medicine 	3
SBSLSC101	2	Introduction to Microbiology	15
		 Viruses, Viroids and Prions: Virus-structure and life cycle of a bacterial virus (lytic and lysogenic), animal virus – DNA virus (ex. Herpes virus) RNA virus (plus and minus stranded), Retrovirus and plant virus (TMV) Viroids, Prions – e.g. scrapie 	5
		2. Prokaryotic cell –Structure Cell wall – Gram positive and Gram negative Nucleoid: consule / glycocolyx: flogolle and endegnere	4
		Nucleoid; capsule / glycocalyx; flagella and endospore 3. Fungi – Growth and reproduction – asexual and sexual	2
		4. Algae – Structural organization	2
		5. Protozoa – Morphological diversity	2

SBSLSC101	3	Microbial growth and its control	15
		 Requirements for growth– Physical – Temperature, pH, Osmotic pressure Chemical – Carbon, nitrogen, sulphur, phosphorus, oxygen, trace elements, growth factors Biofilm formation Culture Media Anaerobic growth Kinetics of growth 	5
		 Binary fission and cell growth Growth curve and generation time Batch and continuous cultures Isolation of microorganisms Preservation of microorganism Control of microbial growth Physical 	
		 Physical Chemical Antimicrobial	4
SBSLSCP101	Practi	cal	Credits : 2
	2. E 3. M 4. I 5. M 6. I 7. S 8. I 9. I 10. C d h Note: S	 Writing a science lab report. Bright field microscopy of stained and unstained samples Measurement of cell size under microscope (concept of mm and um). Example: measurement of pollen grain from different lowers, starch grains (iodine) from different food sources. ntroduction to Stains and Dyes Monochrome staining of bacteria, animal cell (from cheek), plant ell (onion peel) Microbial staining technique: Gram staining; cell wall staining Demonstration of Sterilization of laboratory material(principle of use of autoclave), media preparation and pouring plates. Bilde culture technique for observation of fungi Demonstration of AST (by disc diffusion method) and Minimum nhibitory Concentration (MIC) for a bacterial culture solation of Pure Culture of Bacteria by Streak Plate Method Dpen ended project/ course based research projects- To encourage levelopment of better reading strategies, comprehension skill, earner centered approach, problem based learning, reflective hinking. Students will be continuously monitored for their active ipation during lab sessions. 	

- □ Aneja K.R., Experiments in Microbiology, Plant Pathology and Biotechnology, 2017,5th Edition, *New Age InternationalPublishers*.
- □ Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8th Edition, *PearsonPublisher*.
- Madigan M, Martinko J., Bender K., Buckley D., Stahl D., Brock Biology of Microorganisms, 2017, 14th Edition, *Pearson Publishers*
- □ Reba Kanungo, Ananthanarayan and Paniker's Textbook of Microbiology,2017,10thEdition, *Universities Press Publishers*
- □ TortoraG.J.,FunkeB.R.,CaseC.L.,Microbiology:AnIntroduction,2016,12thEdition, *Pearson Publication*
- □ Willey J., Sherwood L., Woolverton C., Prescott, Harley and Klein's, Microbiology, 2008, 7th Edition, *McGraw Hill HigherEducation*

SEMESTER I COURSE CODE: SBSLSC102

PAPER –II BIOMOLECULES AND SEPARATION TECHNIQUES

Learning Objectives:

- □ To understand the composition of molecules within living cells
- □ To grasp the principles underlying the techniques of separation of molecules

*Brief History and applications to be included in all the topics

Paper II	Biomo	lecules and separation techniques	Credits: 4
Course code	Unit	Topic headings	L / week
SBSLSC102	1	 Biomolecules 1.Non-carbon-containing molecules in cells: a. Water- the most abundant component Molecular structure and physico-chemical properties 	15 2
		 corresponding functions in cells and reasons for it being the basis of life b. Inorganic Ions: Macro-elements- Na, K, Cl, Ca, P, Mg, S Micro-elements – Fe, Cu Zn, Mn, I, Ni function in cells 2. Carbon-containing components in cells: Amina acida and Protain macromalaculas 	1
		 a. Amino acids and Protein macromolecules biological amino acids - general structure and reactions classification of amino acids based on – biochemical nature and structure 	3
		 structure-function relation in proteins b. Protein structure and folding, Molecular Chaperones Primary – Quaternary structures within proteins with typical examples 	2
		 protein folding chaperones and disease Monosaccharide Sugars and Polysaccharide Carbohydrates Nomenclature, structure of common sugars and reactions 	2
		 d. Fatty Acids and Lipids Nomenclature and structure of common lipids 	2
		 e. Nucleotides and Nucleic Acid Macromolecules Nomenclature and structure 	3
SBSLSC102	2	 Molecular Biology 1. Molecular genetics: Early experiments that defined the nature of the gene (Griffith's, Avery's and Hershey's Experiments) Concept of the gene- a structural unit of coding Charactin structure and peckaging 	15 9
		 Chromatin structure and packaging 2. Macromolecular synthesis: Concept of macromolecules DNA synthesis in prokaryotes DNA synthesis in eukaryotes 	6

SBSLSC102	3 Techniques	15
	1. Extraction techniques	3
	• Cell lysis techniques – Physical, chemical	_
	 Solvent extraction of lipids 	
	2. Separation and analytical techniques	
	 Precipitation 	12
	Filtration	
	•	
	Centrifugation Chromete sees has	
	Chromatography	
	• Electrophoresis	
	Using the above techniques to isolate/ analyze particular	
	molecule using a typical example	
SBSLSCP102	Practical	Credits : 2
	1. Introduction to lab discipline and good laboratory practices.	
	2. Solution making:	
	a. Preparation of solutions of a given chemical compound	
	b. Preparation of dilutions from a stock solution	
	3. Water molecules and its properties (solvent, density, cohesion and	
	adhesion, colligative properties)	
	4. pH and its usage:	
	a. pH meter	
	b. Making of own pH indicator papers	
	5. Colorimetry:	
	a. Wavelength of maximum absorbance	
	b. Verification of Beer-Lambert's law	
	6. Study of separation techniques:	
	a. Dialysis	
	b. Isoelectric Precipitation of proteins	
	c. Density gradient centrifugation	
	7. Detection and localization of carbohydrates, proteins, lipids and	
	nucleic acids in vitro and in tissues.	
	8. Detection of amino acids using chromatography technique	
	 Origami and modeling of biochemical structures 10. Extraction of DNA from onion 	
	11. Open ended project/ Course- based research project: To encourage	
	small group discussions and problem solving	
	Note: Students will be continuously monitored for their active participation during lab sessions.	

- □ Nelson D.L. and Cox M.M., Lehninger-Principles of Biochemistry, 2017, 7thEdition, *W H Freeman & Co Publishers*.
- Plummer M. and Plummer D.T., Introduction to Practical Biochemistry, 1988, 3rdEdition, *McGraw Hill Publication*
- □ Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, *Cambridge University Press*.

SEMESTER II COURSE CODE: SBSLSC201 PAPER –I EUKARYOTIC CELL BIOLOGY

Learning Objectives:

- Learn the structure and function of components of eukaryotic cell
- Understand the structure and role of nucleus and plasma membrane
- Learn about protein formation and trafficking through the endomembrane organelles
- Describe the structure and function of mitochondria and chloroplasts
- Understand the process and mechanism of cell division mitosis and meiosis

Paper I	Eukar	yotic Cell Biology	Credits: 4
Course code	Unit	Topic headings	L / week
SBSLSC201	1	Nucleus and Cell membrane – Structure and function 1. Nucleus	15
		 Structure of Interphase nucleus - nuclear membrane, nucleolus, nucleosome model Euchromatin and Heterochromatin Specialized chromosomes – polytene and 	5
		lampbrush chromosomes	2
		 Membrane – their structure and function History and models of membrane structure Transport across membranes 	4
		 Transport processes Simple and Facilitated Diffusion Active transport – example Na+/K+pump 	3
		 Vesicular transport – Endocytosis and exocytosis, Phagocytosis 4. Cell adhesion, cell junctions and extracellular structures 	
		 Cell- cell junctions – tight junctions, gap junctions, adhesion junctions Extracellular matrix of animal cells –collagen, elastin, laminins 	1
		5. Plant cell surface – plant cell wall and plasmodesmata	
SBSLSC201	2	 Cell Organelles 1. Endoplasmic reticulum and ribosomes • Ribosomes – structure of prokaryotic and eukaryotic ribosomes and role in protein 	15 3
		 synthesis Rough ER – structure and role in protein synthesis – signal peptide hypothesis Smooth ER – structure and functions(also function as sarcoplasmic reticulum ER role in biosynthesis of membranes Golgi Complex Structural organization Brief introduction to role of Golgi in protein glycosylation and proteasome in protein degradation 	2

		 3.Lysosomes Formation of lysosomes and role in digestion of materials 	2
		 Lysosomal storage diseases – silicosis and Tay- Sachs disease 4.Peroxisomes Function in animal and plant cells 	2
		Zellweger syndrome	
		5.Mitochondria	2
		• Structure and role in oxidative phosphorylation in ATP synthesis	3
		 Mitochondrial DNA and associated disease – LHON 	
		6.Plastids	3
		• Types of plastids	
		• Structure of chloroplast and role in	
		PhotosynthesisPhotosynthetic pigments	
		• Filotosynthetic pigments	
SBSLSC201	3	Cytoskeleton, cell cycle and cell division 1.Cytoskeleton	15 5
		regression	•
		Types of cytoskeletal elements	5
		Types of cytoskeletal elementsMicrotubules – Structure and role in spindle	0
		Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor 	U
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions 2. Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) 	4
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) Cancer as an example of dysregulation of cell 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions 2. Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) Cancer as an example of dysregulation of cell cycle 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions 2. Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) Cancer as an example of dysregulation of cell cycle 3. Cell Division 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions 2. Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) Cancer as an example of dysregulation of cell cycle 	
		 Types of cytoskeletal elements Microtubules – Structure and role in spindle formation and cilia/ flagella; microtubule motor proteins Microfilaments – Structure and role in muscle contraction and motility (migration via lamellipodia/amoeboid movement/cytoplasmic streaming) Intermediate filament – Structure and functions 2. Cell cycle Cell cycle stages Regulation of Cell cycle (in brief–role of cyclins and Cdks) Cancer as an example of dysregulation of cell cycle 3. Cell Division Mitosis stages and cytokinesis, Metaphase 	

SBSLSCP201	Practical	Credits : 2
	 Electron micrographs of organelles and junctions Barr body from buccal smear Cytoplasmic streaming in plant cells Mitosis from onion root tip Permanent slides of meiotic stages Staining of striated muscle Plasmolysis using Tradescantia leaf Methyl green pyronin staining for localization of nucleic acids Note: Students will be continuously monitored for their active participation during lab sessions. 	

- Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P., Molecular Biology of the Cell, 2007 or 2014, 5 th Edition or 6 th Edition, *Garland Science Publications*
- □ Hardin J., Bertoni J.P., Kleinsmith L.J., Becker's World of the Cell: International Edition, 2011, 8thEdition, *Pearson Publisher*
- □ Karp G, Cell Biology, 2013, 7thEdition- International Student Edition, *Wiley Publication*.
- LodishH.,BerkA.,KaiserC.A.,MolecularCellBiology,2012,7thEdition, *Macmillan Learning Publications*.
- Plopper G, Principles of Cell Biology, 2016, 2ndEdition, Jones and Bartlett Learning Publication.
- □ Taylor D.J., Green N.P.O., Stout G.W., Ed. Soper R., Biological Science, 2005, 3rdEdition, *Cambridge University Press*.

SEMESTER II COURSE CODE: SBSLSC202 PAPER –II Classical Genetics, Ecology and Evolution

Learning Objectives:

- □ To understand the history and basics of modern genetics
- To grasp the influence of environment on survival of organisms along with theories on origin of life and evolution

Paper II	Classi	cal Genetics, Evolution and Ecology	
Course code	Unit	Topic headings	L / week
SBSLSC202	1	Genetics1. Science of Genetics – Overview and history of Modern Genetics, Chromosome Theory of	15 3
		 Inheritance-Sutton-Boveri, Thomas Hunt Morgan's Experiment 2. Mendelian inheritance Herman's experiment on X-ray induced mutations- Concept of homozygous, 	4
		 heterozygous, phenotype, genotype, alleles; Mendel's Laws and Mono and Dihybrid ratios with problems, chi square - for 3:1 and 1:1 ratio. Use sickle cell anaemia as an example to explain the concept of gene 3. Modification of Mendel's laws - Gene interactions: 	3
		 incomplete dominance, co-dominance; Multiple genes, Multiple alleles: Blood group, Epistasis, Linkage, Sex- limited, sexinfluenced. 4. Non-Mendelian inheritance - Evidences for 	3
		 Cytoplasmic factors, cytoplasmic inheritance, extranuclear inheritance (mitochondrial, chloroplast), non-chromosomal inheritance, maternal inheritance, uniparentalinheritance. 5. Pedigree analysis - Symbols of Pedigree, Pedigrees 	2
		of Sex-linked and Autosomal (dominant and recessive).	
SBSLSC202	2	Genetics 1. Allelic Variation and Gene function - Non-	15
		Epistatic inter-allelic genetic interactions, Atavism/Reversion, Penetrance (complete and	5
		incomplete), Expressivity, Pleiotropism. 2. Chromosomal anomalies–	
		Structural: deletion, duplication, inversion, translocation. Numerical: euploidy and aneuploidy (e.g. Downs, Turners, Klienfelter's, Cri-du-chat).	4

		3. Applications - scope of genetics in Healthcare,	4
		therapeutics, evolutionary biology, Biotechnology. 4. Branches of genetics.	4
SBSLSC202			<u> </u>
	3	Ecology and Evolution 1. Organism and its environment: Distribution and	15
		abundance of Organisms, Importance of carbon-based life. Concept of Ecosystem.	3
		2. Biotic Environment: Population, population density, Reproduction, Population growth (Natality, Mortality)	3
		Extinction of Population.3. Interspecific and Intraspecific Population Regulation: Competition, Dispersal, Territoriality, Predation.	4
		(Lotka-Volterra model), Parasitism, Mutualism.4. Theories of Origin ofLife	4
		 a. Spontaneous generation Vs. Biogenesis, other theories (special creation/steady state /Cosmozoan theory) b. Biochemical evolution (Alexander Oparin and Stanley Miller) 5. Lamarkian Evolution 	1
SBSLSCP202		Practical	Credits : 2
SBSLSCP202		1. Pairing game to produce a Punnet square.	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using Darwin finches 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, housefly and cockroach. 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, housefly and cockroach. Animal Biodiversity: a. Part I: Classification of Animals –Invertebrates b. Part II: Classification of Animals–Vertebrates 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, housefly and cockroach. Animal Biodiversity: a. Part I: Classification of Animals –Invertebrates b. Part II: Classification of Animals–Vertebrates c. Digital recording and detailed classification of 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, housefly and cockroach. Animal Biodiversity: a. Part I: Classification of Animals –Invertebrates b. Part II: Classification of Animals–Vertebrates c. Digital recording and detailed classification of one animal from campus/ local environment 	Credits : 2
SBSLSCP202		 Pairing game to produce a Punnet square. Meiosis from <i>Tradescantia</i> (demonstration/Photograph) Study of bacterial motility by Hanging drop technique Collection of blood group information from family and construction of pedigree charts Evolution card games Adaptive radiation using a. Darwin finches b. Mouth parts in insects- mosquito, housefly and cockroach. Animal Biodiversity: a. Part I: Classification of Animals –Invertebrates b. Part II: Classification of Animals–Vertebrates c. Digital recording and detailed classification of 	Credits : 2

.

 c) Measures of central tendency – mean, median, mode and standard deviation, d) Box-Whisker plot. 9. Perform a search on any one topic using PubMed, download about ten abstracts and prepare a summary of the literature.
10. Field Visit and Report.
Note: Students will be continuously monitored for their active
participation during lab sessions.

- □ Brooker, Widmaier, Graham, Stiling, Biology, 2016, 4th edition, *McGraw-Hill Education Publication*
- Campbell, Reece, Urry, Cain, Wasserman, Minorsky, Jackson, Biology, 2016, 11thEdition, *Pearson Publication*
- □ Freeman S., Biological Science, 2004, Benjamin Cummings Publishing Company.
- Hyde D. R., Genetics and Molecular Biology: With Fundamentals of Biostatistics, 2010, 1st Edition, *McGraw Hill Education Publication*
- Russelle P., *iGenetics*: A Molecular Approach, 2010, 3rdEdition, *Pearson Benjamin Cummings Publications*.
- Simon E.J., Biology: The Core, 2016, 2nd Edition, *Pearson Publication*.
- □ Ward P., Lamarck's Revenge: How Epigenetics Is Revolutionizing Our Understanding of Evolution's Past and Present, 2018, *Bloomsburgpublishing*.

<u>Note: All practicals in each course in both semesters have to be understood in terms of</u> <u>Instrumentation, Technique, Concept and Relevance</u> <u>or whichever may be applicable</u>