

Affiliated to the University of Mumbai

Programme: Bachelor of Science

Course: Information Technology

Syllabus for the Academic Year 2024-2025 based on the National Education Policy 2020

PROGRAMME SPECIFIC OUTCOMES				
Identify information technology related problems, analyze them and design the system or provide solution to the problem				
2	Apply the knowledge obtained and emerge as a Developer, Designer, Tester, Security Analyst, Technical Analyst, Networking related modules			
3	To think analytically, creatively and critically in developing robust, extensible and highly maintainable technological solutions to simple and complex problems.			

DEPARTMENT OF INFORMATION TECHNOLOGY

	SEMESTER 1		
COURSE TYPE	COURSE CODE	COURSE TITLE	CREDITS
MAJOR	T111MJ	PROGRAMMING IN C	3
MAJOR PRACTICAL	T111MJP	PROGRAMMING IN C PRACTICAL	1
MINOR	T111MN	DISCRETE MATHEMATICS	3
MINOR PRACTICAL	T111MNP	DISCRETE MATHEMATICS PRACTICAL	1
OPEN ELECTIVE (OE) 1	TOE101	FUNDAMENTALS IN IT	2
OPEN ELECTIVE (OE) 2	TOE102	OFFICE AUTOMATION	2
VOCATIONAL SKILL COURSE (VSC) 1	TVSC101	DIGITAL ELECTRONICS	(1+1) =2
VOCATIONAL SKILL COURSE (VSC) 2	TVSC102	OPERATING SYSTEMS	(1+1) =2
ABILITY ENHANCEMENT COURSE (AEC)	TAEC101	TECHNICAL COMMUICATION SKILLS	2
VALUE EDUCATION COURSE (VEC)	TVEC101	GREEN COMPUTING	2
INDIAN KNOWLEDGE SYSTEM	TIKS101	HISTORY OF COMPUTING IN INDIA	2

MAJOR: Programming in C	Semester – 1
Course Title: Programming in C	Course Code: T111MJ

Course objectives:

- 1. The course aims to train the student to the basic concepts of the C-programming language.
- 2. It aims to train the students to understand the concept of conditional statement, loop, nested loop and break a large problem into smaller parts as a module or function.
- 3. It aims to train the students to understand the concept of string and be able to use an array.to store multiple pieces of homogeneous data
- 4. It aims to train the students to understand the concept of pointer, and use a structure to store multiple pieces of heterogeneous data.
- 5. This course involves a lab component which is designed to give the student handson experience with the concepts.

COURSE OUTCOMES:

The learner will be able to:

- 1. Read, understand and trace the execution of programs in C language.
- 2. Draw flowchart and write the C code for a given algorithm.
- 3. Implement the concept of control statements, loops, and functions to write a C program.
- 4. Implement Programs with pointers and arrays, perform pointer arithmetic, and use the preprocessor.

5. Implement Programs with structures and union.

Lectures per week (1 L	ecture is 60 minutes)	3	
Total number of Hours	in a Semester	45	
Credits		3	
Evaluation System	Semester End	2	50 marks
Examination		Hours	
	Internal Assessment		50 marks

	Introduction to C: History of C, Types of Programming languages, Language translator, Structure of C Program, Advantages of C, Header Files, Algorithm, Rules of Algorithm, Flowchart	
UNIT 1	C Declarations: Character Set, Delimiters, Token, Keyword, Identifies,	15 hours
Concepts	Constants, Variable, Rules for declaring variable, Data Types, Type conversion.	
	Operators and Expressions: Arithmetic operators, relational operators, logical operators, assignment operators, Increment/Decrement operators, the conditional operator, Operator Precedence and Associativity	
	Data Input and output: scanf function, printf function, gets and puts functions.	

UNIT 2 Theories	Loops: While Loop, Do While, For Loop, Nested Loops, Infinite Loops	
UNIT 3 Applicatio	Array: Array Declaration, Array Initialization, Types of Array UNIT 3 String and Standard Function: Declaration and Initialization of String, Display of Strings with Different Formats, String Standard Functions Pointers: Features of Pointers, Pointers, and Address, Pointer Declaration	

MAJOR: Prog	gramming in C PRACTICAL	Semester – 1		
Course Title: Prog	gramming in C Practical	Course Code: T111MJP		
Lectures per wee	k (1 Lecture is 60 minutes)	2		
Total number of H	lours in a Semester	30		
Credits		1		
Evaluation System	Practical Examination	2 Hours	50 marks	

List of Practical: (Can be done in any imperative language)

1	Basic Programs
	a. Write a program to display the message HELLO WORLD.b. Write a program to find the addition, subtraction, multiplication and division of two numbers.
2	Programs on variables:
	a. Write a program to swap two numbers without using a third variable. b. Write a program to find the area of rectangle, square and circle.
3	Conditional statements:

	SOPHIA COLLEGE FOR WOMEN (EMPOWERED AUTONOMOUS)
	a. Write a program to display the greatest of three numbers.b. Write a program to enter a number from the user and display the month name. If number >13 then display invalid input using switch case.
4	Loops:
	a. Write a program to find the factorial of a number. b. Write a program to check whether the entered number is prime or not.
5	Function:
	a. Write a function to find the reverse of a number.b. Write a program to find the sum of natural numbers using a recursive function.
6	Array
	a. Write a program to find the largest value that is stored in the array. b. Write a program that performs addition and subtraction of matrices.
7	Pointers
	a. Write a program to demonstrate the use of pointers.
	b. Write a program to perform addition and subtraction of two pointer variables.
8	Structures and Unions
	a. Programs on structures.
	b. Programs on unions

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Programming with C	Byron Gottfried	Tata McGRAWHill	2nd	1996
2	Programming Logic and Design	Joyce Farell	Cengage Learning	8th	2014

3	"C" Programming"	Brian W. Kernighan and Denis M. Ritchie.	PHI	2nd	
4	Let us C	. Yashwant P. Kanetkar	BPB publication	18 th	
5	Programming in C	Ashok N. Kamthane	Pearson	Third Edition	2019

MINOR: Discrete Mathematics	Semester – 1
Course Title: Discrete Mathematics	Course Code: T111MN

COURSE OBJECTIVES:

- 1. The course objective is to provide students with an overview of discrete mathematics. To introduce the concepts of mathematical logic and set theory.
- 2. To introduce the concepts of logic and Elementary Number Theory.
- 3. To learn various concepts like sequences and recurrence relations.
- **4.** To demonstrate Relations on Sets, Reflexivity, Symmetry, and Transitivity property. Understanding basic concepts and properties related to Graphs and Trees.
- 5. To acquire the basic knowledge of Probability Axioms, Conditional Probability, Multiplication rule.

COURSE OUTCOMES:

- 1. To perform the operations associated with sets, functions, and relations. Construct truth tables for expressions involving the logical connectives.
- 2. Construct correct direct and indirect proofs involving elementary number theory. State and explain the Quotient Remainder Theorem (Division Algorithm).
- **3.** Define and use the terms related to functions. Explain one-to-one, onto functions. Students will be able to solve problems based on each concept.
- **4.** State and explain binary relation, reflexive, symmetric, transitive, equivalence relations. Explain Properties of Graphs, Trees and use graph theory for solving problems.
- 5. Apply principles of Probability, Permutations to solve various problems

Lectures per week (1 Lecture is 60 minutes)		3			
Total number of Hours in a Semester		45			
Credits			3		
Evaluation System Semester End Examination		2 Hours	50 marks		
Internal Assessment			50 mar	ks	
UNIT 1 Concepts				15 hours	
	Division into Cases and the Quotient-Remainder Theorem				

	Functions: Functions Defined on General Sets, One-to-One and Onto, Inverse Functions, Logarithmic Functions, Composition of Functions, Cardinality	
UNIT 2 Theories	Sequences and Recursion Sequences, Second order linear homogenous recurrence relations with constant coefficients Probability Introduction, Probability Axioms, Sample Space and Events, Finite Probability Spaces, Conditional Probability, the Multiplication Rule The Logic of Compound Statements: Logical Form and Logical Equivalence, Conditional Statements	15 hours
UNIT 3 Application	Relations: Relations on Sets, Reflexivity, Symmetry, and Transitivity, Equivalence Relations. Graphs: Definitions and Basic Properties, Trails, Paths, and Circuits, Matrix Representations of Graphs, Subgraphs, Isomorphism's of Graphs Trees: Introduction, Trees, Rooted Trees, Isomorphism's of Graphs, the Pigeonhole Principle, The Inclusion–Exclusion Principle	15 hours

MINOR: DISCRETE MATHEMATICS PRACTION			Semeste	er – 1	
Course Title: DISCRETE MATHEMATICS PRACTICAL			rse Code: T11	11MNP	
Lectures per week (1 Lecture is 60 minutes)			2		
Total number of Hours in a Semester			30		
Credits			1		
Evaluation System	Practical Examination	2 Ho	urs	50 marks	

List of Practical: Write the programs for the following using SCILAB				
1.	Set Theory			
a.	Inclusion Exclusion principle.			
b.	Power Sets			
C.	Mathematical Induction			
2.	Functions and Algorithms			
a.	Recursively defined functions			
b.	Cardinality			

	Polynomial evaluation
	Polynomial evaluation
d.	Greatest Common Divisor
3.	Counting
a.	Sum rule principle
b.	Product rule principle
C.	Factorial
d.	Permutations
e.	Permutations with repetitions
f.	Combinations
g.	Combinations with repetitions
	Probability Theory
	Sample space and events
b.	Finite probability spaces
5.	Graph Theory and Directed Graphs
a.	Paths and connectivity
b.	Adjacency matrix
6.	Properties of integers
a.	Division algorithm
b.	Primes
7.	Recurrence relations
a.	Linear homogeneous recurrence relations with constant coefficients
b.	Solving linear homogeneous recurrence relations with constant coefficients
C.	Solving general homogeneous linear recurrence relations
•	

REFERENCES:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Discrete Mathematics with Applications	Sussana S. Epp	Cengage Learning	4th	2010
2.	Discrete Mathematics, Schaum's Outlines Series	Seymour Lipschutz, Marc Lipson	Tata MCGraw Hill		2007
3.	Discrete Mathematics and its Applications	Kenneth H. Rosen	Tata MCGraw Hill		
4.	Discrete mathematical structures	B Kolman RC Busby, S Ross	PHI		
5.	Discrete structures	Liu	Tata MCGraw Hill		

OE 1: Fundamentals of IT	Semester – 1
Course Title: Fundamentals of IT	Course Code: TOE101

COURSE OBJECTIVES:

- 1. To Provide the Basic Concepts in Information Technology
- 2. The course is intended to familiarize students with the basics of Technology.
- 3. The course is designed to empower students with the knowledge of Computer Basic.
- 4. This course is designed to teach students the basic organization of computer and memory.
- 5. This course is designed to introduce skills relating to IT basics, computer applications

COURSE OUTCOMES:

- 1. The students should be able to learn IT in a simple language, regardless of their specialization.
- 2. The students will be able to pursue specialized programs leading to technical and professional careers and certifications in the IT industry.
- 3. Students will be able to have a basic understanding of personal computers and their operations.
- 4. The student will be able to Understand basic concepts and terminology of information technology.
- 5. Be able to identify basic issues related to information security.

Lectures per week (1 Lecture is 60 minutes)	2
Total number of Hours in a Semester	30

Credits		2	
UNIT 1	Introduction to Computers: Introduction, of computer, Evolution of Computer, Block Classification of Computers, Applications of and limitations of computer, Basic Computer Organization: Role of I/O system. Output Units: Monitors and its types. Printe types. Input and Output devices, Memory and storports and its uses.	Diagram Of a computer, f Computer, Capabilities Diagram Of a computer, Capabilities Diagram Of a computer, Capabilities	15 hours
UNIT 2	CPU and Memory - Secondary Story Device Output Devices Computers at Home, Education, Entertainm and Engineering – Introduction to Computer Security - Comprimary Vs Secondary Storage, Data storage: RAM ROM, PROM, EPROStorage: Magnetic Tapes, Magnetic Disks. Floppy disks Optical Disks, Compact Disks	nent, Science, Medicine nputer Viruses, Worms. rage & retrieval methods. OM, EEPROM. Secondary Cartridge tape, hard disks,	15 hours

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Fundamentals of	Mathews Leon,	Vikas		
	Information Technology,		Publishing		
	Alexis Leon And Mathews		House Pvt		
	Leon, Vikas Publishing		Ltd		
	House Pvt. Ltd, 2009				
2.	Introduction to Information		Pearson		
	Technology, ITL		Education		
	Education Solutions				
	limited, Pearson				
	Education				
3.	Fundamentals of				
	Computers and Information				
	Technology, M.N Doja,				
	2005				

4.	Computer Fundamentals		
	by P.K.Sinha		

OE 2: Office Automation	Semester – 1
Course Title: Office Automation	Course Code: TOE102

COURSE OBJECTIVES:

- 1. The course is structured to equip students with crafting professional word documents and PPT using Microsoft suite tools.
- 2. The course is designed to empower students to work on basic power point utilities and tools which help them create basic power point presentation
- 3. This course is designed to familiarize the students in preparation of documents and PPT
- 4. It will help students in demonstrating interactive presentations.
- 5. The course is designed to develop competence in related to production & presentation of messages in multiple formats & understand the importance of body language.

COURSE OUTCOMES:

- 1. The students should be able to: Make Word Documents and Power Point Presentations in the Professional Environment.
- 2. Demonstrate ability to. Prepare and present effective documentation and presentation skills.
- 3. The students will be able to apply good technical skills to create the Word Docs and PPT.
- **4.** Students will be able to design documents and presentations and will be able to use various Business Communication Aids
- 5. The student will be able to write create official correspondence and also learn to make and give effective presentations.

Lectures p	Lectures per week (1 Lecture is 60 minutes) 2		
Total number of Hours in a Semester		30	
Credits		2	
UNIT 1	Features of MS- Word: Getting Started Concreating Document, Working with Clipboar Editing, Pages, Tables, Illustrations, Add-in Header & Footer, Symbols, Themes, Page Paragraph, Mail Merge, Proofing, Language Movement, Zoom, Macros	rd, Font, Paragraph, Styles, ns, Media, Links, Comments, e Background, Page Setup,	15 hours

	Power Point Presentation: Using Design Templates, Creating Blank	
UNIT 2	Presentation Inserting Objects PowerPoint Views Saving & Printing Your	
	Works Working With Colors & Transitions About Slide Show Timings	15 hours
	Navigating During Presentation. PPT Orientation, Slide Layouts,	
	Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto	
	Shapes, Lines and Arrows, Animation, Recording, Master	
	slide, Media, Links, Add ins, proofing, illustrations, links, symbols,	
	comments, design, Accessibility, comments, compare	

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Introduction to Information Technology, ITL Education Solutions limited, Pearson Education		Pearson Education		
2.	The Complete Computer upgrade and repair book,3rd edition Cheryl A Schmidt, WILEY Dreamtech	Cheryl A Schmidt	WILEY Dreamtech	3rd edition	
3.	Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech,2005	Vikas Gupta,	WILEY Dreamtech,		
4.	PC Hardware and A + Handbook – Kate J. Chas PHI (Microsoft				

VSC 1: DIGITAL ELECTRONICS	Semester – 1
Course Title: DIGITAL ELECTRONICS	Course Code: TVSC101
COURSE OBJECTIVES:	
 To introduce the basics of logic in di 	igital electronics as an entry level course.
To interpret and assess number sys	stems
3. To analyze and design logic circuits	

		,		
COURSE	OUTCOMES:			
1. Apply nu	Apply number system techniques in real digital systems			
2. Underst	tand and develop digital applications			
3. Derive a	and design logic circuits			
Lectures	per week (1 Lecture is 60 minutes)	1		
Total num	ber of Hours in a Semester	15		
Credits		1		
UNIT 1	Number System: Analog System, digital system, numbering system, octal number system, hexadecimal codes binary coded decimal, non-weighted Gray code Binary Arithmetic: Binary addition, Binary subtraction and Bina Boolean Algebra and Logic Gates: Introduction, Logic (AND OR NOT), Boolea Laws, De Morgan's Theorem, exclusive OF gates, Universal Logic gates, Implementation universal gates.	I number system, weighted codes Excess – 3 code, ary multiplication theorems, Boolean and Exclusive NOR	15 hours	

VSC 1: DIGITAL ELECTRONICS PRACTICAL Semester – 1				er – 1
Course Title: DIGITAL ELECTRONICS PRACTICAL Course Code: TVSC10			SC101	
Lectures per week	(1 Lecture is 60 minutes)	2		
Total number of H	ours in a Semester	30		
Credits		1		
Evaluation System	Practical Examination	2 Hou	ırs	

List	List of Practical			
1.	Study of Logic gates and their ICs and universal gates:			
a.	Study of AND, OR, NOT, XOR, XNOR, NAND and NOR gates			
b.	IC 7400, 7402, 7404, 7408, 7432, 7486, 74266			
2.	Implement AND, OR, NOT, XOR, XNOR using NAND gates.			
3.	Implement AND, OR, NOT, XOR, XNOR using NOR gates.			
4.	Implement the given Boolean expressions using minimum number of gates.			
a.	Verifying De Morgan's laws.			

5.	Implement code converters.
a.	Design and implement Binary – to – Gray code converter.
b.	Design and implement Gray – to – Binary code converter.
6.	Implement Adder Arithmetic circuits.
a.	Design and implement Half adder and Full adder.
7.	Implement Arithmetic circuits.
a.	Design and implement a 2-bit comparator.

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Digital Electronics and Logic Design	N. G. Palan	Technova		
2.	Digital Principles and Applications	Malvino and Leach	Tata McGraw Hill		

VSC 2: OPERATING SYSTEMS	Semester – 1
Course Title: OPERATING SYSTEMS	Course Code: TVSC102

Course objectives:

- 1. To understand the services provided by OS and the design of an operating system.
- 2. To make aware of different types of Operating System and their services.
- 3. To understand what a process is and learn different process scheduling algorithms to achieve better performance of a computer system.

COURSE OUTCOMES:

Through the study of this course, students will gain a comprehensive understanding on the concepts and functions of a modern operating system.

Students will be able to:

- 1. Explain the role of the operating system as a high-level interface to the hardware.
- 2. Use OS as a resource manager that supports multiprogramming.
- 3. Understands the different services provided by Operating System at different level.
- 4. Explain the low-level implementation of CPU dispatch.

·	
Lectures per week (1 Lecture is 60 minutes)	1
Total number of Hours in a Semester	15
Credits	1

	Introduction:	
UNIT 1 Concepts + Theories	What is an operating system? Storage structure, Single processor systems, multi-processor systems, multiprogramming, time sharing, operating services	
	Process Management:	
	Introduction to processes, process control block, types of schedulers, five state process model, seven state process model, list of times used in scheduling algorithms, types of scheduling algorithm: first come first serve algorithm, round robin scheduling algorithm	15 hours

VSC 2: OPERATING SYSTEMS PRACTICAL	Semester – 1
Course Title: OPERATING SYSTEMS PRACTICAL	Course Code: TVSC102
Lectures per week (1 Lecture is 60 minutes)	2
Total number of Hours in a Semester	30
Credits	1
Evaluation System Practical Examination	2 Hours

1.	Windows (DOS) Commands – 1
a.	Date, time, prompt, md, cd, rd, path.
b.	Copy, xcopy, format, cls, del, move.
2.	Windows (DOS) Commands – 2
a.	Find, rename, set, type, ver
3.	Linux commands: Working with Directories:
a.	pwd, cd, absolute and relative paths, ls, mkdir, rmdir
b.	file, touch, rm, cp, mv, rename, head, tail, cat, tac, more, less
4.	Linux commands: Working with files:
a.	ps, top, kill, pkill, locate, find

b.	date, cal, uptime, whoami, finger, uname, man, free
5.	Working with Windows Desktop and utilities
a.	WordPad
b.	Paint
6.	Working with Linux Desktop and utilities
a.	The vi editor
b.	Terminal

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Modern Operating Systems	Andrew S. Tanenbaum, Herbert Bos	Pearson	4th	2014
2.	Operating Systems – Internals and Design Principles	Willaim Stallings	Pearson	8th	2009
3.	Operating System Concepts	Abraham Silberschatz, Peter B. Galvineg Gagne	Wiley	8th	
4.	Operating Systems	Godbole and Kahate	McGraw Hill	3rd	

AEC: TECHNICAL COMMUNICATION	Semester – <mark>1</mark>
SKILLS	_
Course Title: Technical Communication Skills	Course Code: TAEC101

COURSE OBJECTIVES:

- 1. The course is intended to emphasize the essential aspects of effective written and verbal communication necessary for professional success. Familiarize students with the basics of Technology-enabled Business Communication.
- 2. The course is designed to empower students to carry out day to day communication at the work place. To impart adequate understanding of various types of communication to facilitate efficient interpersonal
 - communication. To impart the correct practices and strategies of Effective Business writing
- 3. This course is designed to develop the skills of the students in preparing for job search and negotiating their use in GDs and interviews. Helps students in Communicating across Functional Areas.
- 4. Understanding Ethics in Business Communication and Business Communication Aids.
- 5. The course is designed to develop competence in communication skills related to production & presentation of messages in multiple formats & understand the importance of body language.

COURSE OUTCOMES:

- 1. The students should be able to: Apply Verbal and Non-Verbal Communication Techniques in the Professional Environment. Students will be able to deliver messages that incorporate the appropriate use of organizing content, language, vocabulary, kinesics, eye contact, appearance, visual aids, and time constraints.
- 2. Demonstrate ability to interpret texts and observe the rules of good writing. Prepare and present effective presentations aided by ICT tools.
- 3. The students will be able to apply good Oral Communication Skills for Business purpose like in meetings, conferences, GDs etc.
- 4. Students will be able to conduct themselves using proper business ethics and will be able to use various Business Communication Aids
- 5. The student will be able to write impressive official correspondence and also learn to make and give effective presentations.

Lectures pe	er week (1 Lecture is 60 minutes)	2	
Total numb	er of Hours in a Semester	30	
Credits		2	
	The Seven Cs of Effective Communica	tion: Completeness,	
	Conciseness, Consideration, Concretenes	ss, Clarity, Courtesy,	
UNIT 1	Correctness		15 hours
Concepts	Understanding Business Communicati	on : Nature and Scope of	
	Communication, Non-verbal Communicat	ion, Cross-cultural	
	communication, Technology-enabled Bus	iness Communication	
	Barriers to communication Definition of	Noise, classification of	
	Barriers Non-verbal Communication Intro	duction, Definition,	

	significance of nonverbal, forms of non -verbal communication, types of non-verbal communication	
UNIT 2 Theories	Communication Skills for Business: Effective Listening, Business Presentations and Public Speaking, Conversations, Interviews, Writing Business Messages and Documents: Business writing, Business Correspondence, Instructions Developing Oral Communication Skills for Business: Meetings and Conferences, Group Discussions and Team Presentations, Team Briefing, Understanding Specific Communication Needs: Corporate Communication, Persuasive Strategies in Business Communication, Ethics in Business Communication, Business Communication Aids	15 hours

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Business Communication	Edited by Meenakshi Raman and Prakash Singh	Oxford University Press	Second	
2.	Professional Communication	ArunaKoneru	Tata McGraw Hill		
3.	Strategies for improving your business communication	Prof. M. S. Rao	Shroff publishers and distributors		2016
4.	Business Communication	Dr. Rishipal and Dr. Jyoti Sheoran	SPD		2014
5.	Graphics for Learning: Proven Guidelines for Planning, Designing, and Evaluating Visuals in Training Materials	Ruth C. Clark, Chopeta Lyons,	Pfeiffer, Wiley		2011

6.	Basic Business	Lesikar	Tata	10 th	2005
	Communication: Skills for	Raymond V and	McGraw-		
	Empowering the Internet	Marie E. Flatley.	Hill		
	Generation	-			
7.	Nonverbal	Ruesh, Jurgen	University		1966
	Communication: Notes on the Visual	and Weldon	of		
	Perception of Human Relations	Kees	California		
	·		Press		
8.	Business Communication Today	Bovee,	Pearson		2015
	•	Courtland	Education		
		L.;Thill, John V.	Ltd.		
9.	Communication Skills	Dr.	Himalaya		
		NageshwarRao	Publishing		
		Dr.	House		
		Rajendra P. Das			

VEC : GREEN COMPUTING	Semester – 1
Course Title: GREEN COMPUTING	Course Code: TVEC101

COURSE OBJECTIVES:

- 1. The goal of studying green computing is to attain economic viability and improve the way computing devices are used.
- 2. Green computing practices include the development of environmentally sustainable production practices, energy efficient computers and improved disposal and recycling procedures
- 3. To understand the concept of minimizing power utilization in technology.
- 4. To know how the way of work is changing and understand implementation of Paperless work

COURSE OUTCOMES:

Learners will be able to,

- 1. Understand the concept of Green IT and problems related to it.
- 2. Know different standards for Green IT.
- 3. Understand the how power usage can be minimized in Technology.
- 4. Learn about how the way of work is changing.

Lectures per week (1 Lecture is 60 minutes)	2
Total number of Hours in a Semester	30
Credits	2

UNIT 1	Overview and Issues: Problems: Toxins, Power Consumption, Equipment Disposal, Company's Carbon Footprint: Measuring, Details, reasons to bother, Plan for the Future, Cost Savings: Hardware, Power. Initiatives and Standards: Global Initiatives: United Nations, Basel Action Network, Basel Convention, North America: The United States, Canada, Australia, Europe, WEEE Directive, RoHS, National Adoption, Asia: Japan, China, Korea Minimizing Power Usage: Power Problems, Monitoring Power Usage, Servers, Low-Cost Options, Reducing Power Use, Data De-Duplication, Virtualization, Management, Bigger Drives, Involving the Utility Company, Low Power Computers, PCs, Linux, Components, Servers, Computer Settings, Storage, Monitors, Power Supplies, Wireless Devices, Software.	15 hours
UNIT 2	Cooling: Cooling Costs, Power Cost, Causes of Cost, Calculating Cooling Needs, Reducing Cooling Costs, Economizers, On-Demand Cooling, HP's Solution, Optimizing Airflow, Hot Aisle/Cold Aisle, Raised Floors, Cable Management, Vapour Seal, Prevent Recirculation of Equipment Exhaust, Supply Air Directly to Heat Sources, Fans, Humidity, Adding Cooling, Fluid Considerations, System Design, Datacenter Design, Centralized Control, Design for Your Needs, Put Everything Together. Changing the Way of Work: Old Behaviours, starting at the Top, Process Reengineering with Green in Mind, Analysing the Global Impact of Local Actions, Steps: Water, Recycling, Energy, Pollutants, Teleworkers and Outsourcing, Telecommuting, Outsourcing, how to Outsource.	15 hours

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Green IT	Toby Velte,	McGraw		2008
		Anthony Velte,	Hill		
		Robert Elsenpeter			

2.	Green Data Center: Steps for the Journey	Alvin Galea, Michael Schaefer, Mike Ebbers	Shroff Publishers and Distributers	2011
3.	Green Computing and Green IT Best Practice	Jason Harris	Emereo	
4.	Green Computing Tools and Techniques for Saving Energy, Money and Resources	Bud E. Smith	CRC Press	2014

Semester – <mark>1</mark>
Course Code: TIKS101

Course objectives:

This course is intended to introduce students to the history of science and technology in Ancient India and to familiarize them with the major developments in GENERATION OF COMPUTERS.

COURSE OUTCOMES:

After the completion of the course, the students will have a comprehensive understanding of the development of science and technology in different fields of computing in ancient India.

Lectures per week (1 Le	ecture is 60 minutes)	2		
Total number of Hours	in a Semester	30		
Credits		2		
Evaluation System	Semester End		marks	
-	Examination	Hours		
	Internal Assessment		marks	

UNIT 1 CONCEPTS	Laying the foundation (1955-1970), early computer installations, self-reliant growth of the computer industry (1970-1977), government policy, government initiatives	15 hours
UNIT II THEORIES	Private sector enters the computer industry (1978-1990), government initiatives (in the private sector), consequences of government policy, the period of rapid growth of the it industry (1998-2010)	15 hours

SOPHIA COLLEGE FOR WOMEN (EMPOWERED AUTONOMOUS) REFERENCES:

Sr. No.	Title	Author/s
1.	"The first Computer in India", in Computer Education in India – Past, Present and Future",	Mohi Mukherjee,
2.	HISTORY OF COMPUTING IN INDIA 1955 - 2010	V.RAJARAMAN