

Affiliated to the University of Mumbai

Programme: Science Statistics (Minor) Theory Course Code: SSTA111MN Practical Course Code: SSTA111MNP

Syllabus for the Academic Year 2023-2024 based on the National Education Policy 2020

PROGRAMME SPECIFIC OUTCOMES				
1	The learner will be able to understand the fundamentals of statistics, including the key concepts of probability theory, probability distributions, distribution theory, statistical inference, significance testing, and operations research.			
2	The learner will be able apply the concepts taught in the practicals and will be able to analyse and evaluate data as well as come to reliable conclusions. This will prepare pupils for real-world situations.			
3	Apply statistical, operations research, probability theory, time series, designs of experiments, and other principles to real-world issues.			
4.	Know how statistics are used in fields like finance, sociology, science, and economics, among others.			

DEPARTMENT OF MATHEMATICS & STATISTICS COURSE DETAILS FOR MINOR:

	SEMESTER 1	SEMESTER 2
TITLE	DESCRIPTIVE STATISTICS-1	DESCRIPTIVE STATISTICS-2
TYPE OF COURSE DSC/DSE	DSC	DSC
CREDITS	4	4

Programme: Science	Semester – 1		
Statistics Minor			
Course Title: Descriptive Statistics-1	Course Code: SSTA111MN		
COURSE OBJECTIVES:			
To introduce the techniques of data collection and its presentation.			
 To emphasize the need for numerical summary n 	neasures for data analysis.		
To learn to present the data graphically.			
To understand and apply the descriptive technique	ues of statistical analysis to the given data		

COURSE OUTCOMES:

Through this paper, the learner will be able to

- 1. Distinguish between different types of scales of the characteristics.
- 2. Compare the different types of data and describe various methods of data collection.
- 3. Construct Univariate and Bivariate frequency distribution , Cumulative frequency distribution.
- 4. Create appropriate graphical representation of the given data.
- 5. Compute and interpret the relation between the qualitative characteristics in the data.
- 6. Comprehend, compute and interpret the measures of central tendency and dispersion.
- 7. Identify the nature of skewness and kurtosis of the data -mathematically & graphically.

Lectures per w	veek (1 Lectur	e is 60 minutes)		3	
Total number of Hours in a Semester		45		5	
Credits				3	
Evaluation Sys	stem	Semester End Examination	2 Hours		50 marks
		Internal Assessment			50 marks
	1.1	Concept of population and s	sample. Finit	е,	
		Infinite population ,Notion o		15 houro	
UNIT		SRSWOR and SRSWR.			15 nours
	1.2	Types of Characteristics, Di	fferent types	of	
		scales: nominal, ordinal, int	erval and rat	io.	
	1.3	Collection of Primary data:	concept of a		
		questionnaire and a schedu	ile, Seconda	ry	
		data			
	1.4	Types of data: Qualitative a	nd quantitati	ve	
		data; discrete and continuo	us data.		
	1.5	Tabulation and Uni-variate	frequency		
		distribution of discrete and o	continuous		
		variables. Cumulative frequ	ency		
		distribution, Bi-variate frequ	ency		
		distribution			
	1.6	Dichotomous classification-	for two and		
		three attributes, Verification	for		
		Consistency			
	1.7	Association of attributes: Yu	ule's coefficie	nt	
		of association Q. Yule's coe	efficient of		
		Colligation Y, relation betwee	en Q and		
		Y(derivation).			

UNIT 2	2.1Graphical representation of frequency distribution by Histogram, frequency polygon, Cumulative frequency curve.		15 hours
	2.2	Measures of central tendency	
		a) Concept of central tendency of data.	
		Requirements of good measure.	
		b) Locational averages: Median, Mode, and	
		Partition Values: Quartiles, Deciles, and Percentiles.	
		c) Mathematical averages Arithmetic mean	
		(Simple, weighted mean, combined mean),	
		Geometric mean, Harmonic mean,	
		d) Empirical relation between mean,	
		median and mode	
		e) Merits and demerits of using different	
		measures & their applicability	
	3.1	Measures of Dispersion:	
UNIT 3		a) Concept of dispersion. Requirements of	15 hours
		b) Absolute and Relative measures of	
		dispersion: Range Quartile Deviation	
		Mean absolute deviation Variance and	
		Standard deviation.	
		c) Raw moments and central moments and	
		relations between them and their properties	
		d) Concept of Skewness and Kurtosis:	
		Measures of Skewness: Karl Pearson's,	
		Bowley's and Coefficient of skewness	
		based on moments. Measure of Kurtosis,	
		e) Box Plot	

References:

- 1. Agarwal B.L.: Basic Statistics, New Age International Ltd.
- 2. Spiegel M.R. : Tehory and Problems of Statistics, Schaum's Publications series, Tata Mc-Graw Hill
- 3. Kothari C.R. : Research Methodology: Wiley Eastern Limited.
- 4. Goon A.M., Gupta M.K., Dasgupta B. : Fundamentals of Statistics, Volume II: The World Press Private Limited, Calcutta
- 5. Agarwal, B. L. (2003). Programmed Statistics, Second Edition, New Age International Publishers, New Delhi.
- 6. Gupta, S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- 7. Gupta, S. C. and Kapoor, V. K. (1997). Fundamentals of Applied Statistics, Third Edition, Sultan Chand and Sons Publishers, New Delhi.
- 8. Freund, J. E. (1977). Modern Elementary Statistics. Fourth Edition, Prentice Hall of India Private Limited, New Delhi.
- 9. Purohit, S. G., Gore S. D., Deshmukh S. R. (2008). Statistics Using R, Narosa Publishing House, New Delhi.
- **10.** Sarma, K. V. S. (2001). Statistics Made it Simple: Do it yourself on PC. Prentce Hall of India, New Delhi.

Distribution of the topics for the Practicals (Course Code: SSTA111MNP):

- 1. Tabulation
- 2. Attributes
- 3. Classification of Data
- 4. Diagrammatic representation.
- 5. Measures of central tendency
- 6. Measures of dispersion
- 7. Practicals using Excel and R
- i)Classification of Data and Diagrammatic representation.
- ii)Measures of central tendency
- iii)Measures of dispersion

ASSESSMENT DETAILS:

I. Internal Assessment (IA): 50 marks

- IA is a separate head of passing.
- A learner should get a minimum of 20 marks out of 50 to be declared PASS in the course.
- 2 activities of 25 marks each
- An additional 25-mark activity will be held ONLY for those who missed any one or both of the 2 activities, due to valid reasons.
- If the learner does not get 20 marks out of 50, the learner will have to appear for the IA ATKT.

II. Semester End Examination (SEE): 50 marks

- SEE is a separate head of passing.
- A learner should get a minimum of 20 marks in SEE to be declared PASS in the course.
- All units of the syllabus will be covered in SEE and will be given equal weightage.
- An additional SEE will be held for those who are absent, due to valid reasons, for the main/regular SEE.
- If the learner does not get 20 marks out of 50, the learner will have to appear for the SEE ATKT.

PROGRAMME SPECIFIC OUTCOMES				
1	The learner will be able to understand the fundamentals of statistics, including the key concepts of probability theory, probability distributions, distribution theory, statistical inference, significance testing, and operations research.			
2	The learner will be able apply the concepts taught in the practicals and will be able to analyse and evaluate data as well as come to reliable conclusions. This will prepare pupils for real-world situations.			
3	Apply statistical, operations research, probability theory, time series, designs of experiments, and other principles to real-world issues.			
4.	Know how statistics are used in fields like finance, sociology, science, and economics, among others.			

DEPARTMENT OF MATHEMATICS & STATISTICS COURSE DETAILS FOR MINOR:

	SEMESTER 1	SEMESTER 2
TITLE	DESCRIPTIVE STATISTICS-1	DESCRIPTIVE STATISTICS-2
TYPE OF	DSC	DSC
COURSE		
D2C/D2E		
CREDITS	4	4

Programme: Science	Semester – 1
Statistics Minor	
Course Title: Descriptive Statistics-1	Course Code: SSTA111MN
COURSE OBJECTIVES:	
 To enable the learners to understand forecasting and seasonal variation in time series. 	techniques to predict trend
 To enable the learners to understand the conception 	t of index numbers.

2023-2024 STATISTICS

<u>COURSE OUTCOMES</u>: Through this paper, the learner will be able to

- 8. Compute the numerical measures to identify the direction and strength of linear relationship between two variables.
- 9. Build a simple linear regression model and interpret regression coefficients and coefficient of determination.
- 10. Identify the relevant mathematical model which fits the data.
- 11. Identify various components of time series. Apply the appropriate methods to evaluate and eliminate these components.
- 12. Comprehend the construction and application of different index numbers.

Lectures per w	eek (1 Lectu	re is 60 minutes)		3
Total number of	Total number of Hours in a Semester			45
Credits	Credits			3
Evaluation Sys	tem	Semester End Examination	2 Hours	50 marks
		Internal Assessment		50 marks
	1.1	UNIT – I: Correlation and re	gression	
UNIT 1		<u>analysis</u>		15 hours
0		Scatter Diagram, Product m	oment	
		correlation coefficient and it	s properties.	
		Spearman's Rank correlation	n.(With and	
		without ties)		
	1.2Concept of linear regression. Principle of least squares. Fitting a straight line by method of least squares.		f	
	1.3	Relation between regressio	n coefficients	3
		and correlation coefficient.	Concept	
		and use of coefficient of det	ermination (R ²).
	1.4	Fitting a quadratic curve by	method of le	ast
		squares.		
	1.5	Fitting of curves reducible to	linear form	by
		transformation.		
	2.1	<u>Time Series</u>		
UNIT 2		Definition of time series and	d its	15 bours
		component. Models of time	series.	

	2.2	Estimation of trend by: i) Freehand curve	
		method ii) method of semi average	
		iii)Method of Moving average iv) Method of	
		least squares(linear trend only)	
	2.3	Estimation of seasonal component by i)	
		method of simple average ii) Ratio to	
		moving average iii)Ratio to trend method	
		(iv) Link Relative Method	
	3.1	Index Numbers	
UNIT 3		a)Index numbers as comparative tool.	15 hours
		Stages in the construction of Price Index	15 110015
		numbers.	
		b) Fixed base Index Numbers, Chain base	
		Index Numbers. Base shifting,	
		splicing	
		c) Composite & Weighted Index	
		Numbers. Laspeyre's, Paasche's, Marshal-	
		Edgeworth's, Dorbisch & Bowley's	
		and Fisher's Index Numbers formula.	
		d) Quantity Index Numbers and Value	
		Index Numbers Time reversal test, Factor	
		reversal test, Circular test.	
		e) Cost of Living Index Number, Concept of	
		Real Income based on Wholesale	
		Price Index Number , deflating.	

References:

1. Agarwal B.L.: Basic Statistics, New Age International Ltd.

2. Spiegel M.R. : Theory and Problems of Statistics, Schaum's Publications series,

Tata Mc-Graw Hill

3. Kothari C.R. : Research Methodology: Wiley Eastern Limited.

4. Goon A.M., Gupta M.K., Dasgupta B. : Fundamentals of Statistics, Volume II: The World Press Private Limited, Calcutta

Distribution of the topics for the Practicals (Course Code: SSTA111MNP):

- 1. Correlation analysis
- 2. Regression analysis
- 3. Fitting of curve
- 4. Time series
- 5. Index number-l
- 6. Index number-II
- 7. Practical using Excel and R
- i) Correlation analysis
- ii) Regression analysis
- iii) Fitting of curve

ASSESSMENT DETAILS:

III. Internal Assessment (IA): 50 marks

- IA is a separate head of passing.
- A learner should get a minimum of 20 marks out of 50 to be declared PASS in the course.
- 2 activities of 25 marks each
- An additional 25-mark activity will be held ONLY for those who missed any one or both of the 2 activities, due to valid reasons.
- If the learner does not get 20 marks out of 50, the learner will have to appear for the IA ATKT.

IV. Semester End Examination (SEE): 50 marks

- SEE is a separate head of passing.
- A learner should get a minimum of 20 marks in SEE to be declared PASS in the course.
- All units of the syllabus will be covered in SEE and will be given equal weightage.
- An additional SEE will be held for those who are absent, due to valid reasons, for the main/regular SEE.
- If the learner does not get 20 marks out of 50, the learner will have to appear for the SEE ATKT.

