

SOPHIA COLLEGE FOR WOMEN (EMPOWERED AUTONOMOUS)

Affiliated to the University of Mumbai

Programme: Science

Statistics (Minor)

Syllabus for the Academic Year 2023-2024 based on the National Education Policy 2020

DEPARTMENT OF MATHEMATICS & STATISTICS COURSE DETAILS FOR MINOR:

	SEMESTER 1	SEMESTER 2
TITLE	DESCRIPTIVE STATISTICS-1	DESCRIPTIVE STATISTICS-2
TYPE OF	Minor	Minor
COURSE		
DSC/DSE		
CREDITS	4	4

Preamble:

In the current context, possessing a solid understanding of various statistical concepts has become crucial. Statisticians are constantly in demand in the software, research, industry, and education sectors. The various statistics course syllabi have been designed so that students can become competent in an extensive spectrum of statistical processes at the completion of each course. These techniques can be applied to further research while also applying statistical tools appropriately to a diversity of data sets in order to derive some reliable results. Different environments require for different applications of statistics. Quantitative results in various areas of research are referred to as statistics. The study of statistics is an important domain of knowledge that focuses on various techniques of collecting, presenting, analyzing, and interpreting data. It is the science of data-driven learning. The subject provides tools to facilitate decision-making in uncertain situations. Decisionmaking can be rendered simpler by statistics, which measures uncertainties and chance. In addition to building the foundations for the development of essentially every contemporary field, its descriptive and inferential responsibilities offer a variety of unconventional career possibilities, from financial analysis to sports analysis. The main goal of the curriculum is to get students ready to enter into a promising professional life even after graduation. Large volumes of data have been processed by computers over the past 20 years, and more complex methods of statistical analysis may be applied efficiently resulting in reliable results. Therefore, a number of fields, including agriculture, business, management, economics, finance, insurance, education, biotechnology, and medical science, among others, rely heavily on statistical techniques and procedures. Statistics can be divided into three broad categories, (1) descriptive statistics, which summarizes and describes data; (2) inferential statistics, that arrives at decisions about the population based on sample; and (3) operations research, that utilizes statistics in the fields of industrial and management.

	PROGRAMME OBJECTIVES
PO 1	To teach students methods for effective data collection, organization, and summarization skills as well as analysis and interpretation approaches.
PO 2	Introduce students to regression analysis to model relationships between variables and make predictions.
PO 3	To provide students with a understanding of fundamental concepts - probability, random variables, and distributions.
PO 4	Encourage students to use statistical techniques to solve practical issues and assess the reliability of statistical findings in order to develop their critical thinking abilities.
	PROGRAMME SPECIFIC OUTCOMES
PSO 1	The learner will be able to understand the fundamentals of statistics, including the key concepts of probability theory, probability distributions, distribution theory, statistical inference, significance testing, and operations research.
PSO 2	The learner will be able apply the concepts taught in the practicals and will be able to analyse and evaluate data as well as come to reliable conclusions. This will prepare pupils for real-world situations.
PSO 3	Apply statistical, operations research, probability theory, time series, designs of experiments, and other principles to real-world issues
PSO 4	Know how statistics are used in fields like finance, sociology, science, and economics, among others.

Programme: Science	Semester – 1	
Statistics Minor		
Course Title: Descriptive Statistics-1	Course Code: SSTA111MN	

COURSE OBJECTIVES:

- 1. To introduce the techniques of data collection and its presentation.
- 2. To emphasize the need for numerical summary measures for data analysis.
- 3. To learn to present the data graphically.
- 4. To understand and apply the descriptive techniques of statistical analysis to the given data

COURSE OUTCOMES:

Through this paper, the learner will be able to

- 1. Distinguish between different types of scales of the characteristics.
- 2. Compare the different types of data and describe various methods of data collection.
- 3. Construct Univariate and Bivariate frequency distribution, Cumulative frequency distribution.
- 4. Create appropriate graphical representation of the given data.
- 5. Compute and interpret the relation between the qualitative characteristics in the data.
- 6. Comprehend, compute and interpret the measures of central tendency and dispersion.

7. Identify the r	nature of s	kewness and kurtosis of the data	-mathematica	ally &	graphically.	
_	Lectures per week (1 Lecture is 60 minutes)		3			
Total number of Ho	ours in a S	Semester			45	
Credits		C4 E 1 E			3	
Evaluation System		Semester End Examination Internal Assessment	2 Hours		50 marks 50 marks	
	1.1	Concept of population and sa	mple. Finite .		SU Marks	
			-			
UNIT 1			Infinite population ,Notion of SRS, SRSWOR		15 hours	
		and SRSWR.				
	1.2	Types of Characteristics, Diff	• •			
		scales: nominal, ordinal, inter	val and ratio.			
	1.3	Collection of Primary data: co	oncept of a			
		questionnaire and a schedule,	Secondary da	nta		
	1.4	Types of data: Qualitative and	d quantitative	data;		
		discrete and continuous data.				
	1.5	Tabulation and Uni-variate fr	equency			
		distribution of discrete and co	ontinuous			
		variables. Cumulative frequen	ncy distributio	n,		
		Bi-variate frequency distribut				
	1.6 Dichotomous classification- for two and three		ree			
		attributes, Verification for				
		Consistency				
	1.7	Association of attributes: Yul	e's coefficien	t of		
		association Q. Yule's coeffici	ent of Colliga	ition		
		Y, relation between Q and Y(derivation).			
LINUT 2	2.1	Graphical representation of fr	•			
UNIT 2		distribution by Histogram, fre	equency polyg	gon,	15 hours	
		Cumulative frequency curve.			13 Hours	
	2.2	Measures of central tendence	<u>ey</u>			
		a) Concept of central tendenc	-			
		Requirements of good measur				
		b) Locational averages: Medi		1		
		Partition Values: Quartiles, D	eciles, and			
		Percentiles.				
		c) Mathematical averages Ari				
		(Simple, weighted mean, com	bined mean),			

		Geometric mean, Harmonic mean,	
		d) Empirical relation between mean, median	
		and mode	
		e) Merits and demerits of using different	
		measures & their applicability	
	3.1	Measures of Dispersion:	
UNIT 3		a) Concept of dispersion. Requirements of good	151
		measure.	15 hours
		b) Absolute and Relative measures of	
		dispersion: Range, Quartile Deviation, Mean	
		absolute deviation, Variance and Standard	
		deviation.	
		c) Raw moments and central moments and	
		relations between them and their properties	
		d) Concept of Skewness and Kurtosis:	
		Measures of Skewness: Karl Pearson's,	
		Bowley's and Coefficient of skewness based	
		on moments. Measure of Kurtosis,	
		e) Box Plot	

References:

- 1. Agarwal B.L.: Basic Statistics, New Age International Ltd.
- 2. Spiegel M.R.: Tehory and Problems of Statistics, Schaum's Publications series, Tata Mc-Graw Hill
- 3. Kothari C.R.: Research Methodology: Wiley Eastern Limited.
- 4. Goon A.M., Gupta M.K., Dasgupta B.: Fundamentals of Statistics, Volume II: The World Press Private Limited, Calcutta
- 5. Agarwal, B. L. (2003). Programmed Statistics, Second Edition, New Age International Publishers, New Delhi.
- 6. Gupta, S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- 7. Gupta, S. C. and Kapoor, V. K. (1997). Fundamentals of Applied Statistics, Third Edition, Sultan Chand and Sons Publishers, New Delhi.
- 8. Freund, J. E. (1977). Modern Elementary Statistics. Fourth Edition, Prentice Hall of India Private Limited, New Delhi.
- 9. Purohit, S. G., Gore S. D., Deshmukh S. R. (2008). Statistics Using R, Narosa Publishing House, New Delhi.

10. Sarma, K. V. S. (2001). Statistics Made it Simple: Do it yourself on PC. Prentce Hall of India, New Delhi.

PRACTICAL	Course Code: SSTA111MNP
Course Title: Descriptive Statistics -1	

COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. Distinguish between different types of scales of the characteristics.
- 2. Compare the different types of data and describe various methods of data collection.
- 3. Construct Univariate and Bivariate frequency distribution, Cumulative frequency distribution.
- 4. Create appropriate graphical representation of the given data.
- 5. Compute and interpret the relation between the qualitative characteristics in the data.
- 6. Comprehend, compute and interpret the measures of central tendency and dispersion.
- 7. Identify the nature of skewness and kurtosis of the data -mathematically & graphically.

Lectures per week (1 Lecture is 60 minutes)		2		
Total number of Hours in a Semester		30		
Credits			1	
Evaluation System Semester End Examination		2 Hours	50 marks	
	Internal Assessment			
1	Tabulation			
2	Attributes	Attributes		
3	Classification of Data			
4	Diagrammatic representation.			
5	Measures of central tendency	Measures of central tendency		
6	Measures of dispersion	Measures of dispersion		
7	Practicals using Excel and R	Practicals using Excel and R		
	i) Classification of Data and Diagrammatic	i) Classification of Data and Diagrammatic representation.		
	ii)Measures of central tendency	ii)Measures of central tendency		
	iii)Measures of dispersion			

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration

Programme: Science	Semester – 2	
Statistics Minor		
Course Title: Descriptive Statistics-2	Course Code: SSTA122MN	

COURSE OBJECTIVES:

- 1. Develop a clear understanding of the concept of correlation and its importance in statistics...
- 2. Perform regression analysis using real-world data to model relationships between variables and interpret the coefficients
- 3. Understand the process of choosing the best-fitting curve
- 4. Learn the basics of time series analysis, including trend, seasonality, and noise components.
- 5. Apply moving averages, exponential smoothing, and decomposition methods to analyze and forecast time-dependent data.
- 6. Understand the concept of index numbers and their applications in economics and business.

COURSE OUTCOMES:

Through this paper, the learner will be able to

- 1. Students will be able to calculate and interpret correlation coefficients (Pearson's and Spearman's) and use them to identify the strength and direction of relationships between two variables.
- 2. Students will be able to apply simple linear regression techniques to real-world data, interpret regression coefficients, assess the goodness of fit, and make predictions based on the regression model.
- 3. Students will demonstrate the ability to fit various curves (linear, polynomial, and non-linear) to data, select the most appropriate model, and evaluate the fit of the curve.
- 4. Students will be able to decompose time series data into trend, seasonal, and irregular components and apply time series methods (e.g., moving averages, exponential smoothing) to make forecasts for future data points.
- 5. Students will be able to compute and interpret index numbers, such as price indices and quantity indices, and understand their applications in measuring inflation, economic performance, and price changes over time.

6. Comprehend the construction and application of different index numbers.

Lectures per week (1 Lecture is 60 minutes)		3		
Total number	Total number of Hours in a Semester		45	
Credits				3
Evaluation Sys	tem	Semester End Examination	2 Hours	50 marks
		Internal Assessment		50 marks
UNIT 1	1.1	Scatter Diagram, Product mom coefficient and its properties.	UNIT – I: Correlation and regression analysis Scatter Diagram, Product moment correlation coefficient and its properties. Spearman's Rank correlation.(With and without	
	1.2	Concept of linear regression. P	Principle of lea	ast

		squares. Fitting a straight line	
		by method of least squares.	
	1.3	Relation between regression coefficients and	
		correlation coefficient. Concept	
		and use of coefficient of determination (R^2) .	
	1.4	Fitting a quadratic curve by method of least	
		squares.	
	1.5	Fitting of curves reducible to linear form by	
		transformation.	
UNIT 2	2.1	<u>Time Series</u>	
UNII 2		Definition of time series and its component.	15 hours
		Models of time series.	-
	2.2	Estimation of the allow ') For the discount	
	2.2	Estimation of trend by: i) Freehand curve method ii) method of semi average	
		iii)Method of Moving average iv) Method of	
		least squares(linear trend only)	
	2.3	Estimation of seasonal component by i) method	
		of simple average ii) Ratio to	
		moving average iii)Ratio to trend method (iv)	
		Link Relative Method	
V D VV T 4	3.1	<u>Index Numbers</u>	
UNIT 3		a)Index numbers as comparative tool. Stages in	15 hours
		the construction of Price Index	15 hours
		numbers.	
		b) Fixed base Index Numbers, Chain base Index	
		Numbers. Base shifting,	
		splicing	
		c) Composite & Samp; Weighted Index Numbers.	
		Laspeyre's, Paasche's, Marshal-	
		Edgeworth's, Dorbisch & Dorbisch & amp; Bowley's and	
		Fisher's Index Numbers formula.	
		d) Quantity Index Numbers and Value Index	
		Numbers Time reversal test, Factor	
		reversal test, Circular test.	

e) Cost of Living Index Number, Concept of	
Real Income based on Wholesale	
Price Index Number, deflating.	

References:

- 1. Agarwal B.L.: Basic Statistics, New Age International Ltd.
- 2. Spiegel M.R.: Theory and Problems of Statistics, Schaum's Publications series,

Tata Mc-Graw Hill

- 3. Kothari C.R.: Research Methodology: Wiley Eastern Limited.
- 4. Goon A.M., Gupta M.K., Dasgupta B.: Fundamentals of Statistics, Volume II: The World Press Private Limited, Calcutta

PRACTICAL	Course Code: SSTA122MNP
Course Title: Descriptive Statistics -2	

COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. Students will be able to calculate and interpret correlation coefficients (Pearson's and Spearman's) and use them to identify the strength and direction of relationships between two variables.
- 2. Students will be able to apply simple linear regression techniques to real-world data, interpret regression coefficients, assess the goodness of fit, and make predictions based on the regression model.
- 3. Students will demonstrate the ability to fit various curves (linear, polynomial, and non-linear) to data, select the most appropriate model, and evaluate the fit of the curve.
- 4. Students will be able to decompose time series data into trend, seasonal, and irregular components and apply time series methods (e.g., moving averages, exponential smoothing) to make forecasts for future data points.
- 5. Students will be able to compute and interpret index numbers, such as price indices and quantity indices, and understand their applications in measuring inflation, economic performance, and price changes over time.

6. Comprehend the construction and application of different index numbers.

Lectures per week (1 Lecture is 60 minutes)			2	
Total number of Hours in a Semester			30	
Credits			1	
Evaluation System		Semester End Examination	2 Hours	50 marks
		Internal Assessment		
1	Correlation	Correlation analysis		
2	Regression	analysis		
3	Fitting of co	urve		

	,			
4	Time series			
5	Index number-I			
6	Index number-II			
7	Practical using Excel and R			
	i) Correlation analysis			
	ii) Regression analysis			
	iii) Fitting of curve			

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration