

SOPHIA COLLEGE FOR WOMEN (EMPOWERED AUTONOMOUS)

Affiliated to the University of Mumbai

Programme: Science

Mathematics (Minor)

Theory Course Code: SMAT111

Practical Course Code: SMAT111P

Syllabus for the Academic Year 2024-2025 based on the National Education Policy 2020

SOPHIA COLLEGE (AUTONOMOUS) DEPARTMENT OF MATHEMATICS & STATISTICS

COURSE DETAILS FOR MINOR:

	SEMESTER 1		SEMESTER 2
TITLE	CALCULUS-1		CALCULUS-2
TYPE OF COURSE- DSC	Minor	Minor	
CREDITS	4	1	

Preamble:

Many people believe that mathematics is one of the most challenging subjects to learn in school. However, it is still very important in today's world. Mathematics is crucial to comprehending and resolving issues that arise in our daily lives, from the sophisticated systems that run our society to the everyday devices we utilise. An essential component in the continual development of science and technology has been mathematics. The number of applications of mathematics used in practical problems has grown significantly in recent decades. The F.Y.B.Sc. Mathematics syllabus for Semesters I and II have been designed to demonstrate to students the fundamental concepts of mathematics while exposing them to rigorous techniques systematically. Calculus is applied and necessary in every potential field of study. Discrete Mathematics and Algebra encourage logical and mathematical reasoning. Today, mathematics is an important instrument in many areas, including natural science, engineering, medicine, and the social sciences, used extensively throughout the world. New mathematical discoveries are inspired by and implemented by applied mathematics, the area of mathematics that deals with transferring mathematical knowledge to other domains.

	PROGRAMME OBJECTIVES		
PO 1	To develop in the learner a scientific temperament.		
PO 2	Along with developing domain knowledge of several disciplines in the scientific stream, to develop among the learners, the fundamental practical skills towards technical proficiency.		
PO 3 To enable the students to gain employability in various professional co the requirements for industrial professions, and have an opportunity of entrepreneurship.			
PO4	To enable the learners to comprehend a wide range of social and environmental challenges and develop solutions-oriented strategies to issues.		
	PROGRAMME SPECIFIC OUTCOMES		
PSO 1	The learner will be able to use logical and critical thinking abilities in problem solving and develop the habit of self-learning by the end of the course.		
PSO 2	The learner will be able to create and apply quantitative models that emerge in business, social science, and other areas.		
PSO 3	The learner will be able to analyse the mathematical outcomes and use them to solve numerous issues that arise in various areas of mathematics and associated disciplines.		
PSO 4	The learner will be able to identify trends and make a distinction between the problems' core components and non-essential ones.		
PSO 5	The learner will be able to utilise technological expertise to address certain theoretical and applied issues in mathematics and other fields.		
PSO 6	The learner will be able to convert verbally supplied information into a mathematical form, choose and use the proper mathematical formulas or techniques to process the information, and then make the necessary conclusion.		
PSO 7	The learner will be able to recognise the relationships between different areas of mathematics and the connections between mathematics and other disciplines.		

D	-		•			
Programme: Science			Semester -	• 1		
			<u> </u>			
Course Litle: C	Jaiculus-1		Course Co	de: SMAI	111	
COURSE OBJ	<u>IECTIVES:</u>					
I o enable the	learner to		C (1)		1.4	
1. Become f	amiliar with t	he fundamental properties of	of the real nu	mber syst	tem and its subsets,	
which for	m the basis c	of real analysis.				
2. Have a th	orough unde	rstanding of functions, a ke	y building blc	ck of all s	ciences, and the	
ability to a	assess a fund	ction's properties and draw i	ts graph.			
3. Comprehe	end the ideas	s of a function's limit and co	ntinuity, and	to use the	e many results of	
limits to fi	nd solutions	to issues.				
COURSE OUT	<u>COMES</u> :					
At the end of th	e course the	learner will be able to				
1. Recall the	e meanings o	if the terms supremum, infin	hum, bounde	d sets, ne	eighbourhoods,	
interior po	pints, limit po	ints, intervals, and their attri	butes.	с с		
2. Understa	nd order rela	tion in IR and compute supr	emum and ir	fimum of	а	
	IR.			۔		
3. Compren	end and app	by the various results and p	properties of i	۲. سما سام د د ام		
4. Understal	na the conce	pt of functions in R, their cha	aracteristics a	and plot th	le graphs of the	
standard	iunclions do	mains and ranges.		4	1	
5. Define the	e limit of a ful	nction and to gauge if the fu	nction is con	linuous oi Sarantiahla	f NOL.	
	nd the algebi	a of limits, continuous funct	ontify functio		e iunclions, express	
	rty of Interne	ura ia 60 minutas)			5.	
Total number		a Somootor		2)	
		a Semester		<u> </u>)	
	- 4		4.11	2	00	
Evaluation Sys	stem	Semester End	1 Hour		30 marks	
		Internal Assessment			20 marks	
		REAL NUMBER SYSTEM:				
	1.1	Real number system R and	order prope	rties of	10 hours	
UNIT	1.0	R, Absolute values and its p	oroperties	au sa life s	10 nours	
	1.2	AM-GM inequality, Cauchy-Schwarz inequality,				
		Intervals and neighbourhoods, Hausdorff				
	4.0	property.				
	1.3	Bounded sets, I.u.b and g.I.b, I.u.b. axiom and				
		its consequences, Archimedean property and				
		its applications, density of rationals and				
		FUNCTIONS IN REAL NUMBER SYSTEMS:				
UNIT 2		Definitions – Function, dom	ain and rang	e of a		

	2.1	function, direct image and inverse image of a function <i>f</i> , bounded functions, injective function, surjective function, bijective function, composite of two functions (when defined), inverse of a bijective function.	10 hours
	2.2	Graphs of some standard functions such as IxI; e^{x} ; log x; $ax^{2}+bx+c$; 1/x, x^{n} (n \geq 3); sin x; cos x; tan x; x sin(1/x); x^{2} sin(1/x), step functions over suitable intervals of R:	
UNIT 3	3.1	LIMITS AND CONTINUITY: Definition and examples of limit of a function, left-hand-limit, right-hand-limit, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, non- existence of limits.	10 hours
	3.2	Continuity of a real valued function on a set in terms of limits, examples, Continuity of a real valued function at end points of domain. Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity.	
	3.3	Intermediate value theorem and its applications, Bolzano-Weierstrass theorem; Continuity on closed and bounded intervals.	

Main Reference:

- 1. T. M. Apostol, Calculus Volume I, Wiley & Sons (Asia) Pte. Ltd.
- 2. James Stewart, Calculus, Third Edition, Brooks/cole Publishing Company, 1994.
- 3. Ajit Kumar-S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014.

Additional Reference Books:

- 1. R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- 2. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.
- 3. R.G. Bartle- D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.
- 4. Richard Courant-Fritz John, A Introduction to Calculus and Analysis, Volume I, Springer.
- 5. Ghorpade, Sudhir R.- Limaye, Balmohan V., A Course in Calculus and Real Analysis, Springer International Ltd, 2000.
- 6. G.B. Thomas and R. L. Finney, Calculus and Analytic Geometry, Ninth Edition, Addison Wesley, 1998.

PRACTICAL

Course Code: SMAT111P

Course Title: Calculus-1 COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. Understand order relation in IR and compute supremum and infimum of a subset of IR.
- 2. Comprehend and apply the various results and properties of R.
- 3. Understand the concept of functions in R, their characteristics and plot the graphs of the standard functions' domains and ranges.
- 4. Understand the algebra of limits, continuous functions, and differentiable functions; express the property of intermediate value; and use it to identify function solutions.

Lectures per week (1 Lecture is 120 minutes)		2			
Total number of Hours in a Semester		60			
Credits			2		
Evaluation System Semester End		2 Hours	50 marks		
Examination					
Internal Assessment					
1	Absolute value of real numbers.				
2	Application of Archimedean property, intervals, neighbour-hood.				
3	Consequences of I.u.b. axiom, infimum and supremum of sets.				
4	Functions				
5	Limits, finding the Left- and Right-hand limit of the function				
6	Continuous and discontinuous functions				
7	Applications of Intermediate Value theorem and Bolzano's theorem.				

ASSESSMENT DETAILS:

- I. Internal Assessment (IA: Any one activity / assignment / test of 20 marks
- II. Semester End Examination (SEE): Theory exam of 30 marks One hour duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration

Programme: S Mathematics		Semester – 2			
Course Title: Calculus-2 Course Code: SMAT				۲ 122	
COURSE OB	IECTIVES:				
To enable the	learner to				
1. To develo	op in the lear	ner, an understanding of the	e concepts of	derivative	e of a function.
To impart function.	knowledge	of the methods of finding the	e higher orde	r derivativ	e of the given
3. To enable	e the learner	understands the application	s of the deriv	ative of a	function.
4. To develo	op an unders	tanding of the concepts and	applications	of Mean	Value theorems
COURSE OUT	COMES:	• ·	••		
At the end of th	e course the	e learner will be able to			
1. The learn	er can find tl	he derivative of a function or	n the set of re	eal numbe	ers.
2. The learn	er will be ab	le to find the higher order de	rivatives of t	he functio	ns
3. The learn	er will be ab	le to apply the various conce	epts of differe	entiation o	n the functions to
find the n	ature of the f	function.			
4. The learn	er will be ab	le to apply the concepts of N	/lean Value t	heorems a	and find the
approxim	ate value of	the function at a certain poir	nt.		
Lectures per v	veek (1 Lect	ure is 60 minutes)		2	
Total number	of Hours in	a Semester		30	
Credits				2	
Evaluation Sys	stem	Semester End	1 Hour		30 marks
		Examination			
		Internal Assessment			20 marks
		Differentiation of real value	d function of	one	
	1.1	variable:			
UNIT 1		i. Definition of differentiation	on at a point	ofan	10 hours
		open interval, examples	of differentia	able and	
		non-differentiable function	ons, relation	between	
		continuity and differentiability.			
		II. Algebra of differentiable functions. Chain			
		rule, Derivative of Inverse functions, Implicit			
		umerentiation iii Higher order derivatives Leibnitz rule for			
		higher order derivatives			
		Applications of differentiation			
LINIT 2		i Increasing and decreasi	na functions		
	21	definition of local maxim	um and loca	l	10 hours
	<u> </u>	minimum stationary poi	nts first and	second	10 110010
		derivative test example	s		
		Graph of functions using first and second			

		derivatives, concave functions, points of inflection. iii. Geometric Interpretation of Derivatives- applications such as rate of change in area and volume	
UNIT 3	3.1	 Mean Value Theorems and their Applications : i. Rolle's theorem, Lagrange's and Cauchy's mean value theorems, applications and examples. ii. Taylor's theorem and its applications. iii. L-hospital's rule without proof, examples of indeterminate forms 	10 hours

PRACTICAL	Course Code: SMAT122P		
Course Title: Calculus-2			
COURSE OUTCOMES:			
At the end of the course the learner will be able to			

- 1. find the derivative of a function on the set of real numbers.
- 2. find the higher order derivatives of the functions
- 3. apply the various concepts of differentiation on the functions to find the nature of the function.
- 4. the concepts of Mean Value theorems and find the approximate value of the function at a certain point.

Lectures per week (1 Lecture is 120 minutes)			2			
Total number of Hours in a Semester				60		
Credits				2		
Evaluation System Semester End			2 Hours	50 marks		
		Examination				
Internal Assessment						
1	Differentia	Differentiability of a function				
2	Higher or	Higher order derivatives, Leibnitz theorem.				
3	Maxima, Minima and points of inflections					
4	L'Hospitals Rule					
5	Mean value theorems and its applications.					
6	Applications of Taylor's theorem and Taylor's polynomials.					
7	Differentiability of a function					

Main Reference:

- 1. James Stewart, Calculus, Third Edition, Brooks/cole Publishing Company, 1994.
- 2. G.B. Thomas and R. L. Finney, Calculus and Analytic Geometry, Ninth Edition, AddisonWesley.
- 3. Ajit Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014.

Additional Reference Books:

1. R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.

2. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.

3. R.G. Bartle- D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.

4. Richard Courant-Fritz John, A Introduction to Calculus and Analysis, Volume I, Springer.

5. Ghorpade, Sudhir R.- Limaye, Balmohan V., A Course in Calculus and Real Analysis, Springer International Ltd, 2000.

ASSESSMENT DETAILS:

I. Internal Assessment (IA: Any one activity / assignment / test of 20 marks

- II. Semester End Examination (SEE): Theory exam of 30 marks One hour duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration