

SOPHIA COLLEGE FOR WOMEN (EMPOWERED AUTONOMOUS)

Affiliated to the University of Mumbai

Programme: Science

Mathematics (Minor)

Syllabus for the Academic Year 2023-2024 based on the National Education Policy 2020

SOPHIA COLLEGE (AUTONOMOUS) DEPARTMENT OF MATHEMATICS & STATISTICS

COURSE DETAILS FOR MINOR:

	SEMESTER 1	SEMESTER 2
TITLE	CALCULUS-1	CALCULUS-2
TYPE OF	Minor	Minor
COURSE-		
DSC		
CREDITS	4	4

Preamble:

Many people believe that mathematics is one of the most challenging subjects to learn in school. However, it is still very important in today's world. Mathematics is crucial to comprehending and resolving issues that arise in our daily lives, from the sophisticated systems that run our society to the everyday devices we utilise. An essential component in the continual development of science and technology has been mathematics. The number of applications of mathematics used in practical problems has grown significantly in recent decades. The F.Y.B.Sc. Mathematics syllabus for Semesters I and II have been designed to demonstrate to students the fundamental concepts of mathematics while exposing them to rigorous techniques systematically. Calculus is applied and necessary in every potential field of study. Discrete Mathematics and Algebra encourage logical and mathematical reasoning. Today, mathematics is an important instrument in many areas, including natural science, engineering, medicine, and the social sciences, used extensively throughout the world. New mathematical discoveries are inspired by and implemented by applied mathematics, the area of mathematics that deals with transferring mathematical knowledge to other domains.

	PROGRAMME OBJECTIVES
PO 1	To develop in the learner a scientific temperament.
PO 2	Along with developing domain knowledge of several disciplines in the scientific stream, to develop among the learners, the fundamental practical skills towards technical proficiency.
PO 3	To enable the students to gain employability in various professional courses, meet the requirements for industrial professions, and have an opportunity of pursuing entrepreneurship.
PO4	To enable the learners to comprehend a wide range of social and environmental challenges and develop solutions-oriented strategies to issues.

	PROGRAMME SPECIFIC OUTCOMES
PSO 1	The learner will be able to use logical and critical thinking abilities in problem solving and develop the habit of self-learning by the end of the course.
PSO 2	The learner will be able to create and apply quantitative models that emerge in business, social science, and other areas.
PSO 3	The learner will be able to analyse the mathematical outcomes and use them to solve numerous issues that arise in various areas of mathematics and associated disciplines.
PSO 4	The learner will be able to identify trends and make a distinction between the problems' core components and non-essential ones.
PSO 5	The learner will be able to utilise technological expertise to address certain theoretical and applied issues in mathematics and other fields.
PSO 6	The learner will be able to convert verbally supplied information into a mathematical form, choose and use the proper mathematical formulas or techniques to process the information, and then make the necessary conclusion.
PSO 7	The learner will be able to recognise the relationships between different areas of mathematics and the connections between mathematics and other disciplines.

Programme: Science	Semester – 1	
Mathematics Minor		
Course Title: Calculus-1	Course Code: SMAT111MN	

COURSE OBJECTIVES:

To enable the learner to

- 1. Become familiar with the fundamental properties of the real number system and its subsets, which form the basis of real analysis.
- 2. Have a thorough understanding of functions, a key building block of all sciences, and the ability to assess a function's properties and draw its graph.
- 3. Comprehend the ideas of a function's limit and continuity, and to use the many results of limits to find solutions to issues.

COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. Recall the meanings of the terms supremum, infimum, bounded sets, neighbourhoods, interior points, limit points, intervals, and their attributes.
- 2. Understand order relation in IR and compute supremum and infimum of a subset of IR.
- 3. Comprehend and apply the various results and properties of R.
- 4. Understand the concept of functions in R, their characteristics and plot the graphs of the standard functions' domains and ranges.
- 5. Define the limit of a function and to gauge if the function is continuous or not.
- 6. Understand the algebra of limits, continuous functions, and differentiable functions; express the property of intermediate value; and use it to identify function solutions.

Lectures per w	eek (1 Lectu	re is 60 minutes)		3	3
Total number of Hours in a Semester Credits		45		5	
			3	3	
Evaluation System Semester End Examination		2 Hours		50 marks	
		Internal Assessment			50 marks
		REAL NUMBER SYSTEM:	<u>.</u>		
	1.1	Real number system R and ord	der properties	of R,	
UNIT 1		Absolute values and its proper	ties		15 hours
	1.2	AM-GM inequality, Cauchy-S	Schwarz inequ	ality,	
		Intervals and neighbourhoods, Hausdorff property.			
	1.3	Bounded sets, l.u.b and g.l.b, l.u.b. axiom and its			
		consequences, Archimedean p	consequences, Archimedean property and its		
		applications, density of rationals and irrationals.			
		FUNCTIONS IN REAL NU	MBER SYST	EMS:	
UNIT 2		Definitions – Function, domai	n and range o	f a	
	2.1	function, direct image and inverse image of a			15 hours
		function f, bounded functions,	function <i>f</i> , bounded functions, injective function,		
		surjective function, bijective f	unction, comp	osite of	
		two functions (when defined).	two functions (when defined), inverse of a bijective		

		function.	
	2.2	Graphs of some standard functions such as IxI; e ^x ;	
		$\log x$; ax^2+bx+c ; $1/x$, $x^n (n \ge 3)$; $\sin x$; $\cos x$; $\tan x$; x	
		$\sin(1/x)$; $x^2 \sin(1/x)$, step functions over suitable	
		intervals of R:	
		LIMITS AND CONTINUITY:	
UNIT 3			
	3.1	Definition and examples of limit of a function, left-	15 hours
		hand-limit, right-hand-limit, uniqueness of limit if it	
		exists, algebra of limits, limit of composite function,	
		sandwich theorem, non-existence of limits.	
	3.2	Continuity of a real valued function on a set in terms	
		of limits, examples, Continuity of a real valued	
		function at end points of domain.	
		Algebra of continuous functions, Discontinuous	
		functions, examples of removable and essential	
		discontinuity.	
	3.3	Intermediate value theorem and its applications,	
		Bolzano-Weierstrass theorem; Continuity on closed	
		and bounded intervals.	

Main Reference:

- 1. T. M. Apostol, Calculus Volume I, Wiley & Sons (Asia) Pte. Ltd.
- 2. James Stewart, Calculus, Third Edition, Brooks/cole Publishing Company, 1994.
- 3. Ajit Kumar-S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014.

Additional Reference Books:

- 1. R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- 2. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.
- 3. R.G. Bartle- D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.
- 4. Richard Courant-Fritz John, A Introduction to Calculus and Analysis, Volume I, Springer.
- 5. Ghorpade, Sudhir R.- Limaye, Balmohan V., A Course in Calculus and Real Analysis, Springer International Ltd. 2000.
- 6. G.B. Thomas and R. L. Finney, Calculus and Analytic Geometry, Ninth Edition, Addison Wesley, 1998.

PRACTICAL	Course Code: SMAT111MNP
Course Title: Calculus -1	

COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. Understand order relation in IR and compute supremum and infimum of a subset of IR.
- 2. Comprehend and apply the various results and properties of R.
- 3. Understand the concept of functions in R, their characteristics and plot the graphs of the standard functions' domains and ranges.

4. Understand the algebra of limits, continuous functions, and differentiable functions; express the				
property of intermediate value; and use it to identify function solutions.				
Lectures per week (1 Lecture is 60 minutes)		2		
Total number of Hours in a Semester		30		
Credits				1
Evaluation Syst	em	Semester End Examination	2 Hours	50 marks
		Internal Assessment		
1	Absolute value of real numbers.			
2	Application of Archimedean property, intervals, neighbour-hood.			
3	Consequences of l.u.b. axiom, infimum and supremum of sets.			f sets.
4	Functions			
5	Limits, finding the Left- and Right-hand limit of the function			
6	Continuous and discontinuous functions			
7	Applications of Intermediate Value theorem and Bolzano's theorem.			

ASSESSMENT DETAILS:

- I. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- II. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- III. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration

Programme: Science	Semester – 2	
Mathematics Minor		
Course Title: Calculus-2	Course Code: SMAT122MN	

COURSE OBJECTIVES:

To enable the learner to

- 1. To develop in the learner, an understanding of the concepts of derivative of a function.
- 2. To impart knowledge of the methods of finding the higher order derivative of the given function.
- 3. To enable the learner understands the applications of the derivative of a function.
- 4. To develop an understanding of the concepts and applications of Mean Value theorems

COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. The learner can find the derivative of a function on the set of real numbers.
- 2. The learner will be able to find the higher order derivatives of the functions
- 3. The learner will be able to apply the various concepts of differentiation on the functions to find the nature of the function.
- 4. The learner will be able to apply the concepts of Mean Value theorems and find the approximate value of the function at a certain point.

, arae or ,	ne ranemen a	t a certain point.			
Lectures per week (1 Lecture is 60 minutes) Total number of Hours in a Semester		3			
		45			
Credits				3	
Evaluation Sys	stem	Semester End Examination	2 Hours		50 marks
_		Internal Assessment	5		50 marks
		Differentiation of real valued	function of or	<u>ie</u>	
	1.1	variable:			
UNIT 1		i. Definition of differentiation	n at a point of	an open	15 hours
		interval, examples of diffe	-	-	
		differentiable functions, re			
			continuity and differentiability.		
		ii. Algebra of differentiable f			
			Derivative of inverse functions, Implicit		
		differentiation			
		iii. Higher order derivatives, Leibnitz rule for higher			
		order derivatives.			
		Applications of differentiation			
		i. Increasing and decreasing		inition of	
	2.1 local maximum and local minimum, stationary			15 hours	
		points, first and second derivative test, examples			
		ii. Graph of functions using first and second			
		derivatives, concave functi			
		inflection.	· <u>.</u>		
		iii. Geometric Interpretation o	f Derivatives-		

		applications such as rate of change in area and	
		volume	
		Mean Value Theorems and their Applications:	
UNIT 3		i. Rolle's theorem, Lagrange's and Cauchy's mean	
	3.1	value theorems, applications and examples.	15 hours
		ii. Taylor's theorem and its applications. iii. L-	
		hospital's rule without proof, examples of	
		indeterminate forms	

PRACTICAL	Course Code: SMAT122MNP
Course Title: Calculus-2	

COURSE OUTCOMES:

At the end of the course the learner will be able to

- 1. find the derivative of a function on the set of real numbers.
- 2. find the higher order derivatives of the functions
- 3. apply the various concepts of differentiation on the functions to find the nature of the function.
- 4. the concepts of Mean Value theorems and find the approximate value of the function at a certain point.

Lectures per week (1 Lecture is 60 minutes) Total number of Hours in a Semester			2 30		
Credits			1		
Evaluation System		Semester End Examination	2 Hours	50 marks	
		Internal Assessment			
1	Differentiab	Differentiability of a function			
2	Higher order	Higher order derivatives, Leibnitz theorem.			
3	Maxima, Mi	Maxima, Minima and points of inflections			
4	L'Hospitals	L'Hospitals Rule			
5	Mean value	Mean value theorems and its applications.			
6	Applications	Applications of Taylor's theorem and Taylor's polynomials.			
7	Differentiab	Differentiability of a function			

Main Reference:

- 1. James Stewart, Calculus, Third Edition, Brooks/cole Publishing Company, 1994.
- 2. G.B. Thomas and R. L. Finney, Calculus and Analytic Geometry, Ninth Edition, AddisonWesley.
- 3. Ajit Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014.

Additional Reference Books:

- 1. R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- 2. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.
- 3. R.G. Bartle- D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.

- 4. Richard Courant-Fritz John, A Introduction to Calculus and Analysis, Volume I, Springer.
- 5. Ghorpade, Sudhir R.- Limaye, Balmohan V., A Course in Calculus and Real Analysis, Springer International Ltd, 2000.

ASSESSMENT DETAILS:

- IV. Internal Assessment (IA): 50 marks: Two activity /test/assignment each of 25 marks.
- V. Semester End Examination (SEE): Theory exam of 50 marks Two hours duration
- VI. Semester End Examination (SEE): Practical exam of 50 marks Two hours duration

2023-2024 MATHEMATICS & STATISTICS