

Programme:

Science

Programme

Code: SBSCHE

T.Y.B.Sc.

(Choice Based Credit System with effect from the year 2020-21)

	3.3 Turbidimetry and Nephelometry	
4	4.1 Chromatography	
	4.2 Ion exchange chromatography	
	4.3 High Performance Liquid	
	Chromatography	

SBSCHEP5 PRACTICALS 6

Applied Component

Course Code	Title of the	Unit	Topic	Credits
	Paper		_	
	Paper Pharmaceutical	2	1.1 General Introduction to Drugs 1.2 Routes of drug administration and dosage forms 1.3. Pharmacodynamic Agents 2.1 Analgesics, Antipyretics and Anti-Inflammatory Drugs 2.2 Antihistaminic Drugs 2.3 Cardiovascular Drugs 2.4 Antidiabetic Agents 2.5 Antiparkinsonism Drugs 2.6 Drugs for Respiratory System 3.1 Introduction to the dye-stuff industry	2
SBSAPC501	Pharmaceutical and Colour Chemistry	3	 3.1 Introduction to the dye-stuff industry 3.2 Natural and Synthetic Dyes 3.3 Relation Between Colour and Chemical Constitution 	
			3.4 Fluorescent Brightners 3.5 Pigments	
		4	 4.1 Classification of Dyes Based on Application 4.2 Types of Fibres and Dye Fibre attachment 4.3 Basic Operations Involved in Dyeing Process 4.4 Dyeing Method of Cotton Fibers 4.5 Some Important Reactions in Dye Synthesis 4.6 Preparation of Some Intermediates 	
SBSAPCP501	Applied component	_	-	2
	Practical			

Programme Outline: TYBSc (SEMESTER VI)

Course Code	Unit	Name of the Unit	Credits
	No		
SBSCHE601		PHYSICAL CHEMISTRY	2.5
	1	1.1Electrochemistry – III	
		1.2 Renewable energy resources	
	2	2.1 Polymers	
		2.2Phase Equilibria - II and	
		thermodynamic relationships	
	3	Basics of quantum mechanics	
	4	Molecular Spectroscopy - IV	

SBSCHE602		INORGANIC CHEMISTRY	2.5
	1	Theories of metal ligand bond-I	-
	2 2.	Theories of metal ligand bond-I	
		2.1 Stability of metal complexes	
		2.2 Reactivity of metal complexes	
		2.3 Electronic spectra	
	2	1	
	3	3.1 Organometallic chemistry	
		3.2 Metallocenes	
		3.3 Catalysis	
	4	4.1 Chemistry of Group 17	
		4.2 Chemistry of Group 18	
SBSCHE603		ORGANIC CHEMISTRY	2.5
	1	Spectroscopy- I (UV-VIS, IR AND 1H	
		NMR)	
	2	2.1 Stereochemistry -IV	
		2.2 Name Reactions	
	3	3.1 Carbohydrates	
		3.2 Amino acids and proteins	
		3.3 Nucleic acids	
	4	4.1 Polymers	
		4.2 Heterocyclic chemistry	
SBSCHE604		ANALYTICAL CHEMISTRY	2.5
	1	1.1Redox titrations	
		1.2 Complexometric titrations	
		1.3 Precipitation titration	
	2	2.1 Thin Layer Chromatography	
		2.2 Paper Chromatography	
		2.3 Gas Chromatography	
	3	3.1 Polarography	
		3.2 Amperometric titrations	
	4	4.1 Thermal methods	
		4.2 Radioanalytical methods	
		4.3 Mass Spectrometry	
SBSCHEP6		PRACTICALS	6

Applied Component

Course Code	Title of The	Unit	Topic	Credits
	Paper		_	
SBSAPC601	Pharmaceutic	1	1.1 Drug Discovery,	
	al and Colour		Design And Development	
	Chemistry	2	2.1Antibiotics And	
			Antivirals	
			2.2Antimalarials	

		1	T	
			2.3Antihelmintics and	
			Antifungal Agents	
			2.4Antiamoebic Drugs	
			2.5Antitubercular and	
			Antileprotic Drugs	
			2.6Anti-Neoplastic Drugs	
			2.7Anti-HIV Drugs	
			2.8Drug Intermediates:	
			Synthesis and Uses	
			2.9Nano Particles in	
			Medicinal Chemistry	
		3	3.1 Classification of Dyes	
			Based on Chemical	
			Constitution And	
			Synthesis of Selected	
			Dyes	
			3.2 Dyes Used in Food	
			And Cosmetics	
		4	4.1 Non-Textile Uses of	
			Dyes	
			4.2 Chromic Materials	
			4.3 Health and	
			Environmental Hazards of	
			Synthetic Dyes and their	
			remediation processes	
SBSAPCP601	Applied	_	1	
	component			
	Practical			

Preamble:

Programme: BSc Chemistry

Chemistry - a vibrant and ever growing science that encompasses every aspect of our lives. The fascinating study of matter and its applications is vital in areas like drug designing, material science, nanotechnology and most importantly, 'green chemistry', areas that are beneficial to both humanity and the environment. Bachelor's degree in Chemistry is the culmination of in-depth knowledge of Inorganic, Organic and Physical chemistry, Analytical chemistry and specialized courses such as Pharmaceutical Chemistry, spectroscopy, Nanoscience, Forensic Science, Cosmeticology, Food chemistry, Dairy Chemistry, Environmental chemistry and so on.

The learning objectives are designed to provide a focused outcome based syllabus with an agenda to structure the teaching learning experiences in a more student centric manner. This programme helps learners in building a solid foundation for higher studies in Chemistry. The hands-on experience the students gain in Practical enable them to apply theoretical knowledge acquired to solve problems in everyday life, think critically and innovatively. The syllabus is designed so that the student starts from the basic concepts of chemistry and will gradually move towards the advanced level. They are given opportunities to improve their creativity, scientific writing and communication skills through assignments and other co-curricular activities in all the semesters. The credit courses on "Positive Health in Women" and "Innovation in Natural dyeing and Entrepreneurship Skills" offered by the department further enhances their life skills and helps them evolve as entrepreneurs.

Students completing this programme will be equipped with knowledge of the concepts of Chemistry, interpret data and present their findings to both the scientific community and laymen. Completion of this programme will also enable the learners to join teaching professions, conducting research in Industry and Government run research labs.

	PROGRAMME OBJECTIVES		
PO1	The students are expected to understand the basic concepts in chemistry and be aware of the recent development in the subject area.		
PO2	To inculcate critical thinking and scientific attitude in the students.		
PO3	The students should be able to apply the theoretical knowledge and practical skills acquired to solve the real world problems and environmental issues.		

		PROGRAMME SPECIFIC OBJECTIVES
Р	SO1	Core competency: The chemistry graduates are expected to gain the theoretical and practical knowledge of the basic concepts in chemistry.
Р	SO2	Skill development: They would acquire necessary skills and training to pursue higher studies in the field of chemistry and to be an entrepreneur.
P	SO3	Responsible citizens: The students will get trained to adopt and practice sustainable techniques for their personal growth and to address societal and environmental problems.

SEMESTER 5

NAME OF THE COURSE	PHYSICAL CHEMIST	RY
CLASS	TYBSc	
COURSE CODE	SBSCHE501	
NUMBER OF CREDITS	2.5	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	INTERNAL	SEMESTER END
	ASSESSMENT	EXAMINATION
TOTAL MARKS	25	75
PASSING MARKS	10	30

COURSE OBJECTIVES:

CO 1.	To understand different types of spectroscopy - rotational, vibrational and raman spectroscopy and numericals based on them
CO 2.	To study different types of adsorption isotherms, properties of colloidal solutions and applications of surfactants
CO 3.	To study different transmutation reactions, applications of radioisotopes, fission and fusion processes and to calculate the Q-values
CO 4.	To study the influence of ionic strength, hydrostatic pressure, dielectric constant and effect of substituents on the rate of reactions

CLO 1.	solve numerical based on energy levels, wavenumbers and Raman spectra
CLO 2.	determine the surface area of an adsorbent using B.E.T. equation
CLO 3.	understand and apply the Hammet equation, also comment on how ionic strength affects the rate of reactions using numerical
CLO 4.	explain the electrical properties of colloids, micellization and classify surfactants
CLO 5.	calculate the Q-values, explain the nuclear reactor, fissile material and applications of radioisotopes as tracers

UN	TOPIC	Lectur
IT		es
I	MOLECULAR SPECTROSCOPY	15

		L
1.1 1.2 1.3	Rotational Spectrum - Introduction to dipole moment, polarization of a bond, bond moment, molecular structure, Rotational spectrum of a diatomic molecule, rigid rotor, moment of inertia, energy levels, conditions for obtaining pure rotational spectrum, selection rule, nature of spectrum, determination of internuclear distance and isotopic shift (Numericals expected) Vibrational Spectrum - Vibrational motion, degrees of freedom, modes of vibration, vibrational spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy (Numericals expected), conditions for obtaining vibrational spectrum, selection rule and nature of spectrum. Vibrational-Rotational Spectrum of Diatomic Molecule -Energy levels, selection rule, nature of spectrum, P and R branch lines. Anharmonic Oscillator - energy levels, selection rule, fundamental band, overtones (Numericals expected). Application of vibrational-rotational spectrum in determination of force constant; its significance. Infrared spectra of simple molecules like H ₂ O and CO ₂ . Raman Spectroscopy - Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, Stoke's lines, Anti-Stoke's lines, Raman shift, quantum theory of Raman spectrum (Numericals expected), comparative study of IR and Raman spectra, rule of mutual exclusion - CO ₂ molecule.	L
II	2.1 SURFACE CHEMISTRY	8L
	Adsorption - Physical and Chemical Adsorption, types of adsorption isotherms, Langmuir's adsorption isotherm, B.E.T equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation (Numericals expected)	
	2.2 COLLOIDAL STATE	7 L
2.2. 1 2.2. 2 2.2. 3 2.2. 4	Introduction to Colloids - Emulsions, Gels, Sols. Electrical properties of colloids - Origin of charge on colloidal particles, Concept of electrical double layer, Zeta potential, Helmholtz and Stern model, Electro-kinetic phenomena- Electrophoresis, Electro-osmosis, Streaming potential, Sedimentation potential; Donnan Membrane Equilibrium. Colloidal Electrolytes - Introduction, classification; Properties of colloidal electrolytes, types of ionic micelles, micellization, Critical Micelle Concentration. Surfactants: Introduction, Classification, reverse micelles, solubilization of surfactant solutions; applications of surfactants in detergents, insecticides and food industry.	
Ш	NUCLEAR CHEMISTRY	15L

1 4		
3.1	Law of disintegration(Numericals expected)	
3.2	Detection of radiation - Characteristics of nuclear radiations, behavior of ion pairs in	
	electric field, GM counter, Scintillation counter	
3.3	Application of radioisotopes - Use of radioisotopes as tracers	
3.4	Nuclear reactions - Nuclear transmutation, artificial radioactivity, Q – value	
	of nuclear reaction, threshold energy (Numericals expected)	
3.5	Fission process - Fissile and fertile material, nuclear fission, chain reaction, factor	
	controlling fission process- Multiplication factor and Critical size or mass	
	of fissionable materials, nuclear power reactor and breeder reactor.	
3.6	Fusion process - Thermonuclear reactions occurring on stellar bodies and earth.	
IV	4.1 DILUTE SOLUTIONS	8L
	Colligative properties - Vapour pressure and relative lowering of vapour pressure –	
	Raoult's Law. Measurement of lowering of vapour pressure- Static and Dynamic method.	
	Elevation of Boiling point - Thermodynamic derivation relating elevation in boiling	
	point of the solution and molar mass of non-volatile solute (Numericals expected).	
	Depression of Freezing point - Thermodynamic derivation relating depression in the	
	freezing point of the solution and molar mass of non-volatile solute (Numericals	
	expected)	
	Osmotic pressure - Introduction, thermodynamic derivation of Van't Hoff equation,	
	Van't Hoff factor (Numericals expected), Measurement of Osmotic Pressure-	
	Berkeley and Hartley's method, Reverse Osmosis- principle and method.	
4.2.	Influence of solvent dielectric constant	7L
1	Influence of ionic strength (Numericals expected)	. —
4.2.	• ` · · · · · · · · · · · · · · · · · ·	
	Influence of hydrostatic pressure	
1	Influence of hydrostatic pressure Linear Gibbs energy relationships- (Hammett's equation)	
2	Linear Gibbs energy relationships- (Hammett's equation)	
2 4.2.		
2 4.2. 3	Linear Gibbs energy relationships- (Hammett's equation)	
2 4.2.	Linear Gibbs energy relationships- (Hammett's equation)	
2 4.2. 3 4.2.	Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant	241.
2 4.2. 3 4.2.	Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS	24L
2 4.2. 3 4.2.	Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives:	24L
2 4.2. 3 4.2.	Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory	24 L
2 4.2. 3 4.2.	Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: To train the students to handle different instruments and maintain laboratory discipline To carry out the experiments mentioned in the course and thereby be able to 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: To train the students to handle different instruments and maintain laboratory discipline To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments 	24 L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: To train the students to handle different instruments and maintain laboratory discipline To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to Understand the handling of instruments and correlate practical experiments with theoretical knowledge Set up different electrochemical cells 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 2. Set up different electrochemical cells 3. Practice laboratory safety measures and precautions to be taken while handling 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: To train the students to handle different instruments and maintain laboratory discipline To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to Understand the handling of instruments and correlate practical experiments with theoretical knowledge Set up different electrochemical cells 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 2. Set up different electrochemical cells 3. Practice laboratory safety measures and precautions to be taken while handling 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: To train the students to handle different instruments and maintain laboratory discipline To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to Understand the handling of instruments and correlate practical experiments with theoretical knowledge Set up different electrochemical cells Practice laboratory safety measures and precautions to be taken while handling the instrument, electrodes and different chemicals 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 2. Set up different electrochemical cells 3. Practice laboratory safety measures and precautions to be taken while handling the instrument, electrodes and different chemicals 1. To investigate the adsorption of acetic acid on activated charcoal and test the validity of Freundlich adsorption isotherm. 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 2. Set up different electrochemical cells 3. Practice laboratory safety measures and precautions to be taken while handling the instrument, electrodes and different chemicals 1. To investigate the adsorption of acetic acid on activated charcoal and test the 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 2. Set up different electrochemical cells 3. Practice laboratory safety measures and precautions to be taken while handling the instrument, electrodes and different chemicals 1. To investigate the adsorption of acetic acid on activated charcoal and test the validity of Freundlich adsorption isotherm. 2. To determine the Critical Micelle Concentration of sodium lauryl sulfate from the measurement of conductance at different concentrations. 	24L
2 4.2. 3 4.2.	 Linear Gibbs energy relationships- (Hammett's equation) -Substituent constant, reaction constant, equation, reaction mechanism, σ constant PRACTICALS Course Objectives: 1. To train the students to handle different instruments and maintain laboratory discipline 2. To carry out the experiments mentioned in the course and thereby be able to correlate the importance of the theory with the practical experiments Course Outcomes: Learner will be able to 1. Understand the handling of instruments and correlate practical experiments with theoretical knowledge 2. Set up different electrochemical cells 3. Practice laboratory safety measures and precautions to be taken while handling the instrument, electrodes and different chemicals 1. To investigate the adsorption of acetic acid on activated charcoal and test the validity of Freundlich adsorption isotherm. 2. To determine the Critical Micelle Concentration of sodium lauryl sulfate from 	24L

- 4. To determine the amount of iodide, bromide and chloride in the mixture by potentiometric titration.
- 5. To determine the half-life, decay constant and the average life of a radioactive element graphically.
- 6. To study the influence of ionic strength on reaction between potassium persulphate and potassium iodide.
- 7. To determine the Hamette's constant of ortho-, meta- and para- amino/nitro benzoic acid by pH measurements.

References

Theory

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co. Ltd.
- 2. Physical Chemistry, P.C. Rakshit, 6 Edition, 2001, Sarat Book Distributors, Kolkota.
- 3. Fundamental of Molecular Spectroscopy, 4th Edn. Colin N Banwell and Elaine McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.
- 4. Physical Chemistry, G.M. Barrow, 6^a Edition (2007), Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 5. The Elements of Physical Chemistry, P.W. Atkins, 2rd Edition, Oxford University Press Oxford.
- 6. Polymer Science, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.
- 7. Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan, New Age International (P) Ltd., Publishers, 2011.
- 8. Physical Chemistry, Keith J Laidler, John H. Meiser, 2nd Edition, CBS publication and distributors Pvt. Ltd.

Practical

- 1.Experiments in Physical Chemistry C.W. Garland, J.W. Nibler and D.P. Shoemaker, McGraw Hill New York 8th Edition (2003)
- 2. Practical Physical chemistry, Vishwanathan B. and Raghavan P.S. Viva Books (2017)
- 3.Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001

NAME OF THE COURSE	INORGANIC CHEMIS	TRY	
CLASS	TYBSc		
COURSE CODE	SBSCHE502		
NUMBER OF CREDITS	2.5		
NUMBER OF LECTURES PER	4		
WEEK			
TOTAL NUMBER OF LECTURES	60		
PER SEMESTER			
EVALUATION METHOD	INTERNAL	SEMESTER END	
	ASSESSMENT	EXAMINATION	
TOTAL MARKS	25	75	
PASSING MARKS	10	30	

COURSE OBJECTIVES:

CO 1.	To expose students to the concept of symmetry and symmetry elements
CO 2.	To understand structure of crystalline solids and defects
CO 3.	To learn the preparation and properties of superconductors and nanomaterials
CO 4.	To familiarize with chemistry of inner transition elements

CLO 1.	interpret the symmetry of simple inorganic molecules and assign appropriate point
	groups
CLO 2.	classify crystalline solids based on structures
CLO 3.	write synthesis, properties and application of superconductors and nanomaterials
CLO 4.	compare properties of inner transition elements and transition elements

UNI T	TOPIC	
I	MOLECULAR SYMMETRY AND CHEMICAL BONDING	
	L11L	ecture
1	.Molecular symmetry: Introduction, importance, symmetry elements and operations. Concept of point groups with illustrations.	8L
1.2	Chemical bonding: MOT of heteronuclear diatomic and polyatomic species (BeH ₂ , H ₂ O, H ₃ ·). Molecular shapes of linear and angular molecules. Walsh corelation diagrams of H ₂ O and H ₃ ·.	7L
II	SOLID STATE CHEMISTRY	
2.1	Structure of solids: Explanation of terms, closest packing of rigid spheres (SC, BCC, FCC, HCP) packing density, concept of voids, limiting radius ratio. Point defects in solids: ionic (Frenkel and Schottky) and non-ionic (vacancy and	8L
2.2	interstitial) Solid state synthesis: Film deposition using dip coating, spin coating, chemical	4L
2.3	vapor deposition. Superconductivity: Discovery, types, explanation of terms and applications	3L
III	CHEMISTRY OF INNER TRANSITION ELEMENTS	
3.1	Chemistry of lanthanides: Position in the periodic table and electronic configuration. Properties, occurrence, extraction and separation	12L

	of Lanthanides; Applications of lanthanides		
3.2		3L	
IV	Chemistry of actinides (only Uranium): Occurrence, extraction and application MISCELLANEOUS TOPICS		
1 V	MISCELLANEOUS TOPICS		
4.1	Comparative Chemistry of group 16: Electronic configuration, trends in physical	5L	
	properties, allotropy. Manufacture of sulfuric acid by Contact process		
4.2	Nano materials: Introduction properties (antical and electrical) methods of	5L	
7.2	Nano materials: Introduction, properties (optical and electrical), methods of synthesis and applications		
	synthesis and applications		
4.3	Non aqueous solvents: Classification and importance of non-aqueous solvents.	5L	
	Characteristics and study of liquid ammonia and liquid dinitrogen tetroxide as non-		
	aqueous solvents with respect to acid-base and redox reactions. Supercritical carbon		
	dioxide and ionic liquids as solvents	A 17	
	PRACTICALS Lacronic abiations	24 L	
	Learning objectives		
	1. To train students to prepare simple inorganic complexes, silver nanoparticles and to analyze given inorganic complexes		
	2. to analysis metal ions from variety of samples by complexometry		
	3. to train students to perform titrimetric analysis under non-aqueous conditions		
	Learning outcomes: The learner will be able to		
	1. prepare and analyze simple inorganic complexes		
	2. prepare and characterize silver nanoparticles using UV spectrophotometer		
	3. estimate metal ions from an unknown sample with high degree of accuracy		
	complexometrically		
	4. carry assay of given drug samples by non-aqueous titrations		
	Preparation of trisethylenediammine nickel thiosulphate complex.		
	2. Preparation of tetra amine copper complex.		
	3. Estimation of copper (complexometrically/iodometrically) in tetra amine		
	copper complex.		
	4. Estimation of lead complexometrically (Standardization of EDTA expected)		
	5. Estimation of calcium from milk sample by EDTA back titration.		
	6. Preparation of silver nanoparticles and their spectroscopic characterization.		
	7. Estimation of two commercial drug samples using non aqueous titration.		

References

Theory

- 1. Concise Inorganic Chemistry, J.D. Lee, 4th Edn, ELBS
- 2. Inorganic Chemistry: Principles of Structure and Reactivity, James E. Huheey
- 3. Mechanisms of Inorganic Chemistry, Basolo F and Pearson R.C., John Wiley & Sons, NY,
- 4. Organometallic Chemistry: A Unified Approach, Ram Charan Mehrotra, New Age International.
- 5. Inorganic Chemistry, D. F. Shriver and P. W. Atkins, 3rd edition, Oxford University Press (1999)
- 6. Advanced Inorganic Chemistry, Cotton and Wilkinson, 3. Edition.

Practical

- 1. Practical Inorganic Chemistry, Shikha Gulati, JL Sharma, Shagun Manocha, CBS Publishers and distributors.
- 2. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.

3. Advanced Experiments in Inorganic Chemistry, G. N. Mukherjee, 1st Edn, 2010, U.N. Dhur & Sons Pvt Ltd.

NAME OF THE COURSE	ORGANIC CHEMISTR	RY	
CLASS	TYBSc		
COURSE CODE	SBSCHE503		
NUMBER OF CREDITS	2.5		
NUMBER OF LECTURES PER	4		
WEEK			
TOTAL NUMBER OF LECTURES	60		
PER SEMESTER			
EVALUATION METHOD	INTERNAL	SEMESTER END	
	ASSESSMENT	EXAMINATION	
TOTAL MARKS	25	75	
PASSING MARKS	10	30	

COURSE OBJECTIVES:

To understand

CO 1.	Method of naming organic compounds
CO 2.	Mechanisms of reactions and name reactions, catalysts and reagents involved in reactions (including selectivity), preparation and reactions of organometallic compound
CO 3.	Stereochemistry of compounds without stereogenic center and cycloalkanes
CO 4.	Natural products and their structure determination and synthesis and basic principles of
	photochemistry and some of the reactions.

COURSE LEARNING OUTCOMES:

Learner will be able to

CLO 1.	To identify and write the mechanism of reactions studied with different substrates,
	apply various catalysts and reagents for interconversion of functional groups
CLO 2.	Identify the optical activity of molecules without stereogenic center and stereospecific
	and stereoselective reactions
CLO 3.	Name a organic compound
CLO 4.	Identify and classify the natural products, determine the structure of some natural
	products.

UN IT	TOPIC	Lectur es
I	MECHANISM OF ORGANIC REACTIONS	
1.1	Basics terms and concepts - bond fission, reaction intermediates, electrophiles and nucleophiles, ligand, base, electrophilicity vs. acidity and nucleophilicity vs basicity. Thermodynamic and kinetic control of organic reactions - concept with mechanism of	

	the following addition of HX to butadiene; sulfonation of napthalene	
1.3	Neighbouring group participation in nucleophilic substitution reactions - participation	
	of lone pair of electrons, kinetics and stereochemical outcome.	
1.4	Pyrolytic elimination - Cope, Chugaev, pyrolysis of acetates.	
1.5	Pericyclic reactions – introduction, definition, characteristics and types - Electro cyclic reactions (ring opening and ring closing), cycloaddition, sigma tropic	
	rearrangement, cheletropic reaction	
1.6	Frontier Molecular orbitals FMO approach towards cycloaddition reactions (Diels	
	Alder reaction and ethene dimerization), Woodward Hofmann rules	
1.7	Molecular rearrangements - mechanism of following rearrangements with examples	
	and stereochemistry wherever applicable a) Migration to electron deficient carbon:	
	Pinacol, Benzylic acid b) Migration to electron deficient nitrogen- Beckmann,	
	Hofmann c) Migration involving a carbanion - Favorskii.	
	2.1 IUPAC NOMENCLATURE OF THE FOLLOWING CLASSES OF	
II	COMPOUNDS	7 L
2.1.		
1		
2.1.	Bicyclic Compounds- spiro fused and bridged (up to 1 carbon atom) - saturated and	
2	unsaturated.	
2.1.	Cumulenes, up to 3 double bonds.	
3	Biphenyls	
2.1.	Monocyclic (5 and 6 membered) aromatic and non-aromatic heterocyclic compounds	
4	containing a maximum of two hetero atom among N,O,S	
-	2.2 STEDEOCHEMISTDY HI	QT
	2.2 STEREOCHEMISTRY III	8L
2.2.	2.2 STEREOCHEMISTRY III	8L
2.2.	2.2 STEREOCHEMISTRY III Recapitulation of important concepts including R/S configuration	8L
2.2.	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion	8L
2.2. 1 2.2. 2	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis.	8L
2.2. 1 2.2. 2 2.2.	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and	8L
2.2. 1 2.2. 2 2.2. 3	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls.	8L
2.2. 1 2.2. 2 2.2. 3 2.2.	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative	8L
2.2. 1 2.2. 2 2.2. 3	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities	
2.2. 1 2.2. 2 2.2. 3 2.2. 4	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative	8L 8L
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism)	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO ₂ - C=C, CN, NO ₂ ,	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO₂ - C=C, CN, NO₂, aromatic ring; Pd/C - C=C, COCl → CHO (Rosenmund); Lindlar catalyst	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1 3.1. 2	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO₂ - C=C, CN, NO₂, aromatic ring; Pd/C - C=C, COCl → CHO (Rosenmund); Lindlar catalyst Reagents - (a) LiAlH₄and Red-Al - reduction of CO, -COOR, -CN, and NO₂	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1 3.1. 2	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO₂ - C=C, CN, NO₂, aromatic ring; Pd/C - C=C, COCl → CHO (Rosenmund); Lindlar catalyst Reagents - (a) LiAlH₁and Red-Al - reduction of CO, -COOR, -CN, and NO₂ (b) NaBH₁ - reduction of CO (c) SeO₂ - hydroxylation of allylic and benzylic	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1 3.1. 2	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO₂ - C=C, CN, NO₂, aromatic ring; Pd/C - C=C, COCl → CHO (Rosenmund); Lindlar catalyst Reagents - (a) LiAlH₁and Red-Al - reduction of CO, -COOR, -CN, and NO₂ (b) NaBH₁ - reduction of CO (c) SeO₂ - hydroxylation of allylic and benzylic positions, oxidation of CH₂ to CO (d) m-CPBA epoxidation of C=C (e) NBS -	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1 3.1. 2	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO₂ - C=C, CN, NO₂, aromatic ring; Pd/C - C=C, COCl → CHO (Rosenmund); Lindlar catalyst Reagents - (a) LiAlH₁and Red-Al - reduction of CO, -COOR, -CN, and NO₂ (b) NaBH₁ - reduction of CO (c) SeO₂ - hydroxylation of allylic and benzylic positions, oxidation of CH₂ to CO (d) m-CPBA epoxidation of C=C (e) NBS - allylic and benzylic bromination (f) KMnO₄ OsO₄ - oxidation of C=C (g) Jones	
2.2. 1 2.2. 2 2.2. 3 2.2. 4 III 3.1. 1 3.1. 2	Recapitulation of important concepts including R/S configuration Molecular chirality and element of symmetry: Mirror plane symmetry, inversion centre, rotation-reflection (alternating) axis. Chirality of compounds without stereogenic centre: cummulenes, spirans and biphenyls. Conformations of cyclohexane, mono, disubstituted cyclohexanes and their relative stabilities 3.1 CATALYSTS AND REAGENTS Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) Catalysts - Catalysts for hydrogenation - Raney Ni, Pt and PtO₂ - C=C, CN, NO₂, aromatic ring; Pd/C - C=C, COCl → CHO (Rosenmund); Lindlar catalyst Reagents - (a) LiAlH₁and Red-Al - reduction of CO, -COOR, -CN, and NO₂ (b) NaBH₁ - reduction of CO (c) SeO₂ - hydroxylation of allylic and benzylic positions, oxidation of CH₂ to CO (d) m-CPBA epoxidation of C=C (e) NBS -	

2.2	3.2 ORGANOMETALLIC CHEMISTRY	7L
3.2.		
3.2.	Organolithium/ magnesium compounds - Preparation using alkyl/aryl halides. Reactions with compounds containing acidic hydrogen, alkyl halides, carbonyl compounds, cyanides and CO ₂ .	
2	Lithium dialkylcuprates - Preparation and reactions with aliphatic/ aromatic/ vinylic halides. Micheal addition	
3.2.	Organozinc compounds - Preparation and application in Simmons-Smith reaction with mechanism. Organopalladium compounds - Heck reaction and Suzuki coupling and basic catalytic	
3.2. 4	cycle for coupling reaction.	
IV	4.1 NATURAL PRODUCTS	10L
4.1.		
4.1. 2 4.1. 3 4.1. 4	Natural products - Introduction, sources, classification and functions (Structures of the compounds specified are expected) a) Terpenoids (isoprene rule) – i) citral ii) α-terpeniol iii) camphor iv) α-pinene b) Alkaloids – i) nicotine ii) atropine c) Vitamins – i) vitamin A ii) vitamin C d) Hormones – i) adrenaline ii) thyroxine e) Steroids – i) cholesterol ii) progesterone Structure determination of natural products - Ozonolysis in terpenoids, examples of open chain and monocyclic monoterpenoids; Hofmann exhaustive methylation and degradation in alkaloids - simple open chain and monocyclic amines; Structure determination of citral and nicotine through degradation studies; Total synthesis – a) citral from 3-methylbutan-1-ol b) nicotine from nicotinic acid. Commercial synthesis - i) camphor from α-pinene ii) α- and β- ionones from citral Introduction to primary and secondary metabolites and broad classification of natural products based on biosynthesis	
	4.2 PHOTOCHEMISTRY	5L
4.2. 1 4.2. 2 4.2. 3	Introduction - Difference between thermal and photochemical reactions; Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, fate of excited molecules, photosensitization. Photochemical reactions of olefins — i) photoisomerisation ii) photochemical rearrangement of 1,4-dienes (di-π methane) Photochemistry of carbonyl compounds — i) Norrish I ii) Norrish II cleavages iii) photoreduction (e.g. benzophenone to benzpinacol).	
	PRACTICALS	24L
	Learning objective:	
	1. To understand the method and concept of separation of a binary mixture quantitatively	
	 To train the learners to perform qualitative analysis and identify a component To understand the method of purification of the components. 	
	4. To develop the skill of determining physical constant of compounds	

Learning outcomes: Learners will be able	
1. To identify the nature of a binary mixture and separate the mixture	
quantitatively.	
2. To enable the students to develop skills in organic qualitative analysis	
3. To enable students to purify compounds by recrystallization technique	
Organic Separation	
Separation of a binary mixture - Type of mixture, Separation and identification	
(microscale) of one of the components through systematic scheme of identification.	
Type: Solid + Solid (no carbohydrates to be given) Mass of solid: 3 g	

Reference

Theory

- 1. Organic chemistry, T.W Graham, Solomons Craig, B Fryhle
- 2. Organic Chemistry, Jonathan Clayden, Nick Greeves, Stuart Warren and Peter Wothers, Oxford University Press.
- 3. A Guidebook to mechanism in Organic Chemistry, Peter Sykes, 6th Edition, Pearson Education, New Delhi.
- 4. Organic Chemistry, 8th Edition John McMurry.
- 5. Stereochemistry By Nasipuri
- 6. Stereochemistry, P.S. Kalsi, 4^hEdition, New age International Limited.
- 7. Name Reactions in Heterocyclic Chemistry-Jie Jack Li, Wiley Interscience publications, 2005.
- 8. Name Reactions- Jie Jack Li, 4th Edition, Springer Pub.
- 9. Lehninger Principles of Biochemistry, 7th Edition, David Nelson and Michael Cox, Publisher W.H Freeman
- 10. IUPAC Nomenclature by S.C.Pal
- 11. Chemistry of Natural Products, O.P.Agarwal
- 12. Chemistry of Natural Products, Chatwal Anand Vol I and II

Practical

- 1. Practical Organic Chemistry A.I. Vogel
- 2. Practical Organic Chemistry- Middleton
- 3. Practical Organic Chemistry- O.P. Aggarwal

NAME OF THE COURSE	ANALYTICAL CHEM	ISTRY
CLASS	TYBSc	
COURSE CODE	SBSCHE504	
NUMBER OF CREDITS	2.5	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	INTERNAL	SEMESTER END
	ASSESSMENT	EXAMINATION
TOTAL MARKS	25	75
PASSING MARKS	10	30

COURSE OBJECTIVES:

CO 1.	To introduce the importance of sampling and statistical treatment of data in chemical
	analysis.
CO 2.	To get a knowledge of various concentration units and their interconversion for
	applying it to solve a hypothetical problem.
CO 3.	To introduce the learner to the various pre-concentration, separation and different
	chemical methods of analysis used in the field of analytical chemistry.
CO 4.	To learn principle, working and applications of atomic spectroscopy

CLO 1.	decide appropriate sampling techniques for a given sample and apply statistical tests to the given data or the data generated in the laboratory to comment on the accuracy and precision of a given method.
CLO 2.	work comfortably with different concentration units, inter-convert them as per requirement and understand controlling of reactant concentration to increase yield in the lab and also at industrial level.
CLO 3.	to decide the most appropriate pre-concentration and the method of analysis for a given analyte.
CLO 4.	compare different spectroscopic methods with regards to working, limitations and advantages

UN IT	TOPIC	Lectur e
I	1.1 STATISTICAL TREATMENT OF DATA – I	8 L
1.1. 1 1.1. 2	Treatment of Analytical Data - Criteria for rejection of doubtful data - (i) 2.5 d rule (ii) 4 d rule (iii) Q test Concept of Confidence limit, confidence interval and its computation using - (i) Population standard deviation (ii) Student's t-test (ii) Range Test of significance- (i) Null hypothesis (ii) F-test (variance ratio test) Graphical representation of data and obtaining best fitting straight line i) line	
1.1. 3 1.1. 4	passing through origin ii) not passing through the origin (Derivation is not expected); i)Method of averages ii) Method of least squares 1.2 SAMPLING	7L
1.2. 1 1.2. 2 1.2. 3 1.2. 4	Sampling - Terms involved, importance, types Sampling of gases - ambient and stack sampling, equipments used Sampling of liquids - homogeneous and heterogeneous, static and flowing Sampling of solids- free flowing and compact; importance of particle and sample size Reduction of sample size – need and methods (i) Coning and quartering (ii) Riffling	,,2
1.2. 5		

II	2.1 CHEMICAL CALCULATIONS	5L
2.1. 1 2.1. 2 2.1. 3	Interconversion of various concentration units Percent composition of elements in chemical compounds Stoichiometry-limiting reagent (Numericals expected)	
	2.2 METHODS OF SEPARATION - SOLVENT AND SOLID EXTRACTION	10L
2.2. 1 2.2. 2 2.2. 3 2.2. 4 2.2. 5 2.2.	Partition coefficient, distribution ratio and separation factor Single step, multistep extraction, percentage extraction and extraction efficiency (Numericals expected) Role of complexing agents in solvent extraction, chelation, ion pair formation Types of solvent extraction: Batch and continuous, Craig's counter current extraction Solid phase extraction - Principle, process and applications Comparison of solid phase extraction with solvent extraction	
6		
III	3.1 Optical Methods – II	
3.1. 2 3.1. 3 3.1. 4 3.1. 5 3.1. 6 3.1. 7	Atomic Spectroscopy: Flame Emission Spectroscopy (FES) and Atomic Absorption Spectroscopy (AAS) – Introduction Energy level diagram, Atomic, Absorption and Emission spectra Flame Photometry – Principle; Instrumentation – Flame Atomizers, Types of burners, wavelength selectors, detectors Atomic Absorption Spectroscopy- Principle; Instrumentation- source, chopper, flame and electro-thermal atomizer Quantification, methods of FES and AAS- Calibration curve, Standard addition and Internal standard methods Comparison between FES and AAS Applications, advantages and limitations of FES and AAS	7 L
/	3.2 Molecular Fluorescence and Phosphorescence Spectroscopy	4L
3.2. 1 3.2. 2 3.2. 3	Introduction and Principle (Jablonski Diagram) Relationship between Fluorescence intensity with concentration Factors affecting Fluorescence and Phosphorescence Instrumentation and Applications of Molecular Fluorescence and Phosphorescence Spectroscopy Comparison of Fluorimetry and Phosphorimetry	

3.2. 4 3.2.	Comparison of Fluorimetry and Phosphorimetry with Absorptions methods	
5. 3.2. 6	3.3 TURBIDIMETRY AND NEPHELOMETRY	4L
3.3. 1 3.3. 2 3.3.	Introduction and Principle Factors affecting scattering of radiation – Concentration, particle size, wavelength and refractive index Instrumentation and Applications of Turbidimetry and Nephelometry	4L
IV	CHROMATOGRAPHY-I	
4.1	Chromatography - Introduction to chromatographic techniques, Classification of chromatographic techniques. Separation based on partition, adsorption, ion-exchange and size exclusion.	2L
	4.2 ION EXCHANGE CHROMATOGRAPHY	8L
4.2. 1 4.2. 2 4.2. 3 4.2. 4 4.2. 5	Introduction, Principle Types of ion-exchanger, Ideal properties of resin Ion exchange equilibria and mechanism, selectivity coefficient and separation factor; Factors affecting separation of ions Ion exchange capacity and its determination for cation and anion exchangers Applications - Preparation in demineralized water, Separation of halides, concentration of trace elements, separation of amino acids and preparation of primary standard solutions	
	4.3 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY	5L
4.3. 1 4.3. 2 4.3. 3	Principle and Instrumentation, Normal and Reverse phase HPLC Detectors – Universal detectors – RI and specific detector - UV Applications of HPLC	
	PRACTICALS Learning Objectives:	24L
	 To train learners to prepare standard solutions of known concentration. To train learners to handle and standardize analytical instruments for its optimum use. To introduce the learner to various classical and instrumental 	

methods of analysis to real life and commercial samples.

Learning Outcomes: The learner will be able to

- 1. decide suitability of an instrument for its use in analysis.
- 2. learn to prepare and standardise solutions with the highest degree of accuracy.
- 3. analyse different samples using various methods of chemical analysis
- 1. Determination of sodium carbonate in washing soda by pH metry titration.
- 2. Estimation of the amount of Cr (VI) in the given solution as dichromate by the method of least squares spectrophotometrically
- 3. Estimation of the amount of vitamin C in the given solution by redox titration with Ce (IV)
- 4. Determination of saponification value of given oil
- 5. Determination of the amount of acetic acid in a sample of vinegar by the potentiometric titration with a standard base using quinhydrone electrode
- 6. Determination of the amount of Fe(III) using bioreagent in the given solution spectrophotometrically
- 7. Determination of the amount of potassium in commercial sample by flame photometry using calibration curve method

Reference

Theory

- 1. Fundamentals of analytical Chemistry, 8th Edition :Skoog , West, Holler and Crouch, India Edition
- 2. Analytical Chemistry –G.D. Christian, 6th Edition, John Wiley and Sons.
- 3. Instrumental Analysis Skoog, Holler and Crouch (2007), Cenage Learning India Private Limited (2007)
- 4. Modern analytical Chemistry- David Harvey, 2000
- 5. Thermal Methods, James Todd-Analytical Chemistry by Open Learning
- 6. Analytical Chemistry-Krupadanam David, University Press; 2012
- 7. Instrumental Methods of Analysis-Willard, Merritt, Dean and Settle, 7th Edition.
- 8. Instrumental Methods of Chemical Analysis Chatwal Anand, 5^a Edition, 2005. Himalaya Publishing House.

Practical

1. Vogel's Quantitative Chemical Analysis, 3rd edition

NAME OF THE COURSE	APPLIED COMPONENT
CLASS	TYBSc
COURSE CODE	SBSAPC501
NUMBER OF CREDITS	
NUMBER OF LECTURES PER WEEK	4

TOTAL NUMBER OF LECT	URES PER 75		
SEMESTER			
EVALUATION METHOD		INTERNAL	SEMESTER END
	A	SSESSMENT	EXAMINATION
TOTAL MARKS		25	75
PASSING MARKS		10	30

COURSE OBJECTIVES:

CO 1.	Understand the classification of drugs and dyes, basic terms used in medicinal and dyestuff chemistry, and routes of drug administration.
CO 2.	To understand the various pharmacodynamic agents with respect to chemical structure, therapeutic action and uses.
CO 3.	Understand the processes involved in the synthesis of dyes/drugs and their intermediate
CO 4.	To understand the correlation between the colour of a compound and the structure, the origin, mode of application, classification of dyes, pigments and fluorescent brighteners and the science behind dye fibre attachment.

CLO 1.	Define various terms used in medicinal chemistry and color chemistry
CLO 2.	Reproduce the synthesis of drugs and dyes
CLO 3.	Predict the use of the drug
CLO 4.	To be able to identify, predict, classify commercially available dyes based on terminology/nomenclature, the nature of dye-fibre attachment and the fastness of dyes

UNIT	UNIT TOPIC I 1.1 GENERAL INTRODUCTION TO DRUGS			
I				
1.1.1	Definition, requirement and classification of drugs (based on Therapeutic action)			
1.1.2	Nomenclature of drugs- generic, brand and systematic name.			
1.1.3	Medicinal terms- Pharmacon, Pharmacophore, Prodrug, Half-life efficiency, LD ₅₀ , ED ₅₀ , Therapeutic index.			
1.1.4	Drug related terms- receptors, drug-receptor interaction, potency, bioavailability, toxicity, addiction, spurious and misbranded drugs, Adulterated drugs, Pharmacopoeia			
	1.2 ROUTES OF DRUG ADMINISTRATION AND DOSAGE FORMS	5		

1.2.1	Oral and parenteral routes with advantages and disadvantages.	
1.2.2	Formulations, different dosage forms (emphasis on sustained release	
1.2.3	formulations.)	
	Total Quality Management (TQM) – concept, Quality Control, Quality	
	Assurance and their inter-relation; Food and Drug Administration (FDA) -	
	concept, role and importance, classification; Pharmacopoeia - history, Drug act	
	and schedules, components; Good Laboratory Practices (GLP), International	
	Organization of Standardization (ISO), Good Manufacturing Practice (GMP),	
	Drug Technical Advisory Board (DTAB).	
1.3	PHARMACODYNAMIC AGENTS - CNS Drugs- Classification based on	
	pharmacological actions- CNS Depressants & CNS Stimulants; i) Concept of	
	sedation and hypnosis, anaesthesia ii) Phenytoin (Hydantoin) iii) Trimethadione	
	(Oxazolidinediones) Alprazolam (Benzodiazepines) iv) Levetiracetam	
	(Pyrrolidines) v) Amphetamine (Phenethylamine) (Asymmetric synthesis from	
	phenyl acetic acid) vi) Chlorpromazine (Phenothiazines)	
	[*A brief introduction of the following pharmacodynamic agents and the study	
	with respect to their chemical structure (memorizing the structure not expected)	
	chemical class, therapeutic uses, and side effects]	
		3
	2.1 ANALGESICS, ANTIPYRETICS AND ANTI-INFLAMMATORY	
II 211	DRUGS	3
2.1.1	Analgesics and Antipyretics – i) Morphine (Phenanthrene alkaloids) ii) Tramadol	
	(Cyclohexanols) - Synthesis from salicylic acid iii) Aspirin (Salicylates) iv) Paracetamol (p-Amino phenol)	
2.1.2	Anti-inflammatory Drugs - Mechanism and inflammatory conditions; i) Steroids:	
2.1.2	Prednisolone, Betamethasone ii) Sodium Diclofenac iii) Aceclofenac (N- Aryl	
	anthranilicacid) - Synthesis from 2,6-dichlorodiphenyl amine	
	, , , , , , , , , , , , , , , , , , , ,	
2.2	ANTIHISTAMINIC DRUGS - Histamine and histamine receptors - Synthesis	
2.2	and mechanism; i) Diphenhydramine (Ethanol amines) ii) Cetrizene (Piperazine)	
	(Synthesis from 4- Chlorobenzhydryl chloride) iii) Chlorpheniramine maleate	
	(Ethyl amines) iv) Pantoprazole (Benzimidazoles)	
		2
2.3	CARDIOVASCULAR DRUGS - Cardiovascular drugs - Classification based	
	on pharmacological action; i) Isosorbidedinitrate (Nitrates) ii) Valsartan (Amino	
	acids) (structure not expected) iii) Atenolol (Aryloxy propanol amines) -	
	Synthesis from 2. Hydrogy ghood soctomids in Apple diving (Psychiaes), a) Emeganide	
	3-Hydroxy phenyl acetamide iv) Amlodipine (Pyridines) v) Frusemide (Fyrogogodida (Sylfomoyd bengaio acid) yi) Pogyyagtetin (Pyrimidine)	
	/Furosemide (Sulfamoyl benzoic acid) vi) Rosuvastatin (Pyrimidine)	3
2.4	ANTIDIABETIC AGENTS - Diabetes - General idea, types and Insulin	
	therapy; i) Glibenclamide (Sulphonylureas) ii) Metformin (Biguanides) iii)	
	Dapagliflozin (Pyranose) iv) Pioglitazone (Thiazolidinediones) – Synthesis from	
	2-(5-ethylpyridin-2-yl) ethanol	
2.5	ANTIDADIZINGONICM DDUGG D 1' 2 1' 1'1 1'1	2
2.5	ANTIPARKINSONISM DRUGS - Parkinson's disease – general idea; i)	2
	Procyclidine hydrochloride (Pyrrolidines) ii) Ethopropazine hydrochloride (Phenothiiazines) iii) Levodopa (Amino acids) - Synthesis from Vanillin	
	(1 henoumazines) iii) Levodopa (Amino acids) - Syndiesis nom vaimini	

2.6	DRUGS FOR RESPIRATORY SYSTEM - Drugs for respiratory system -	
	general idea, types - Expectorants, Mucolytes, Bronchodilators, Decongestants,	
	Antitussives; i) Ambroxol (Cyclohexanol) - Synthesis from paracetamol	
	ii) Salbutamol (Phenyl ethyl amines) iii) Codeine Phosphate (Opiates)	
	iv) Formoterol (N-formamide) v)Theophylline (methylxanthines)	
		3
III	INTRODUCTION TO THE DYE-STUFF INDUSTRY	
3.1	Dyes – Definition, requirements of an ideal dye - Colour, Solubility, Linearity,	2
	Coplanarity, Fastness, Substantivity, Economic viability; Explanation of	
	nomenclature or abbreviations of commercial dyes with at least one example	
	suffixes – G, O, R, B, K, L, C, S H, 6B, GK, 6GK; Naming of dyes by colour	
	index (two examples) used in dye industries	
	3.2 NATURAL AND SYNTHETIC DYES	3
3.2.1	Natural Dyes- Definition, Examples, limitations and uses - Heena, Turmeric,	
	Saffron, Indigo, Chlorophyll, Tyrian purple and cochineal; names of the chief	
2 2 2	dyeing material/s in each natural dye [structures not expected]	
3.2.2	Synthetic dyes- Definition, primaries and intermediates; Important milestones in	
	the development of synthetic dyes – Emphasis on Name of the Scientist, dyes and	
	the year of the discovery is required. (structure not expected)	
	3.3 RELATION BETWEEN COLOUR AND CHEMICAL	
3.3.1	CONSTITUTION Absorption of visible light, Colour of wavelength absorbed, Complementary	5
J.J.1	colours.	
3.3.2	Armstrong theory (quinonoid theory) and its limitations	
3.3.3	Witt's Theory; Recapitulation - Chromophore, Auxochrome, Bathochromic and	
	Hypsochromic Shift, Hypochromic and Hyperchromic effect	
3.3.4	Valence Bond theory, comparative study and relation of colour in the following	
	classes of compounds/dyes – i) Benzene ii) Nitrobenzene iii) Nitroanilines	
	iv) Nitrophenols v) Benzoquinones vi) Azo vii) Triphenyl methane	
	viii) Anthraquinones.	
3.3.5	Molecular Orbital approach to colour – structure relationship	
3.4	FLUORESCENT BRIGHTENERS	
	Fluorescent brightens – General idea, important charcteristics and applications	
	one example with structure of each of the following classes - i) Stilbene ii)	
	Coumarin iii) Hetrocyclic vinylene derivative iv) Naphthalimide	
3.5	PIGMENTS - Characteristics, Classification, Difference between a dye and a	3
3.3	pigment, applications - toners and lakes	
	pigment, applications - tolicis and lakes	2
	CLASSIFICATION OF DYES BASED ON APPLICATION	
IV	CEASSIFICATION OF DIES BASED ON ALL LICATION	
IV 4.1	Dyes - Definition, fastness properties and applicability of substrates, examples	6

	yellow G, Fast orange R b) Coupling components- Naphthol AS, Naphthol ASG v) Mordant Dyes-Eriochrome Black A, Alizarin vi) Vat Dyes- Indanthrene brown RRD vii) Sulphur Dyes- Sulphur Black T (no structure) viii) Disperse Dyes-Celliton Fast brown 3R ix) Reactive Dyes- Cibacron Brilliant Red B. 4.2 TYPES OF FIBRES AND DYE FIBRE ATTACHMENT	2			
101		2			
4.2.1	Introduction to the structure of fibres and corresponding classes of dyes applicable to these fibres – a) Natural: Cotton, wool, silk b) Synthetic: polyester,				
4.2.2	polyamides Binding forces of dyes on substrate- ionic forces, covalent linkages, hydrogen bonding, Van der Waals forces				
4.3	BASIC OPERATIONS INVOLVED IN DYEING PROCESS – Preparation of Fibers and Dye bath, Application of dyes and Finishing				
	reparation of ribers and Bye bath, Application of tyes and rimshing	1			
4.4	DYEING METHODS OF COTTON FIBERS - Dyeing methods - Direct, Mordant, Vat and Disperse	1			
4.5	IMPORTANT REACTIONS IN SYNTHESIS OF DYES - i) Nitration ii) sulfonation iii) halogenations iv) diazotization, v) ammonolysis vi) reduction - definition, reagents and examples of each type of reaction (mechanism not expected)	2			
	4.6 PREPARATION OF DYE INTERMEDIATES	3			
4.6.1	Benzene derivatives – i) Sulphanilic acid ii) o-m,p-nitroanilines iii) o-m-p-chloronitrobenzene iv) m-dinitrobenzene ; Naphthalene Derivatives – i) Naphthionic acid ii) H-Acid ; Anthraquinone derivatives- i) Benzanthrone				
	PRACTICALS				
	Course objectives				
	1. To prepare dyes on a bench scale				
	2. To estimate the drug samples quantitatively				
	3. To learn the application of colorimeter/spectrophotometer in the assay of drugs.				
	4. To develop the skill of dyeing of fabric				
	Course Outcomes: The learner will be able to				
	 analyse commercial samples of drugs using a suitable method. synthesis of dyes on a bench scale and dyeing of fabric 				
	SYNTHESIS OF DYES: (Any Three) 1. Preparation of Fluorescein from resorcinol and phthalic anhydride.				
	2. Preparation of eosin from fluorescein.				
	3. Preparation Orange II from sulphanilic acid.				
	4. Preparation of Indigo from o-nitrobenzaldehyde.				
	ESTIMATION OF DRUGS: (Any three)				
	1. Estimation of Ibuprofen (Back titration)				
	2. Estimation of acid neutralizing capacity of a drug				
	3. Estimation of Iodine in Tincture Iodine				
	4. Assay of Riboflavin in a given drug				
	PROJECT WORK:				
	Dyeing of Fabric (silk, cotton, polyester) using Orange II/Indigo				

SEMESTER 6

NAME OF THE COURSE	PHYSICAL CHEMIST	RY		
CLASS	TYBSc			
COURSE CODE	SBSCHE601			
NUMBER OF CREDITS	2.5			
NUMBER OF LECTURES PER	4			
WEEK				
TOTAL NUMBER OF LECTURES	60			
PER SEMESTER				
EVALUATION METHOD	INTERNAL	SEMESTER END		
	ASSESSMENT	EXAMINATION		
TOTAL MARKS	25	75		
PASSING MARKS	10	30		

COURSE OBJECTIVES:

CO 1.	Understand the fundamental principles of electrochemical reactions, including electron transfer processes, electrode kinetics, and thermodynamics involved in redox reactions.		
CO 2.	Learn the classification and characterization techniques of polymers based on their		
	chemical structure, morphology, thermal properties, and mechanical behavior.		
CO 3.	Explore the mathematical formalism of quantum mechanics, including wavefunctions, operators, eigenvalues, and eigenvectors, and their application in solving quantum mechanical problems.		
CO 4.	Explore the instrumentation used in NMR and ESR spectroscopy, including magnet design, radiofrequency pulse generation, signal detection, and data processing techniques.		

CLO 1.	Display thorough understanding of the fundamental principles of electrochemical			
	reactions, including electron transfer processes, electrode kinetics, and thermodynamics			
	governing redox reactions.			
CLO 2.	Proficiency in analyzing the relationship between polymer structure, processing			
	methods, and the resulting properties, including mechanical, thermal, electrical, and			
	optical properties.			
CLO 3.	Comprehensive understanding of quantum mechanics, including the Schrödinger			
	equation, operators, eigenvalues, and eigenvectors, to solve quantum mechanical			
	problems.			

CLO 4.	Gain proficiency in understanding the NMR and ESR instrumentation, including
	magnet setup, radiofrequency pulse generation, signal detection, and data processing
	techniques.

UNI T	TOPIC		
I	1.1 ELECTROCHEMISTRY- III	9 L	
1.1. 1	. Activity and Activity coefficient - Lewis concept, ionic strength (Numericals expected), Mean ionic activity and mean ionic activity coefficient of an electrolyte, expression for activities of electrolytes. Debye-Huckel limiting law (No derivation). Chemical and concentration cells - Chemical cells with and without transference,		
1.1.	Electrode concentration cells and Electrolyte concentration cells with and without transference (Numericals expected) Polarization - Concentration polarization and its elimination		
1.1. 3 1.1. 4	Decomposition potential and Overvoltage - Introduction, decomposition potential and its experimental determination, overvoltage, relationship between decomposition potential and overvoltage, factors affecting decomposition potential, Tafel's theory of overvoltage, Tafel's equation for hydrogen overvoltage, experimental determination of overvoltage (Numericals expected).		
	1.2 RENEWABLE ENERGY RESOURCES	6L	
1.2. 1 1.2. 2	Fuel Cells- Principle, construction and working of Bacon's fuel cell, types and applications Hydrogen as a Fuel - Future fuel, production of hydrogen by direct electrolysis of water, advantages of hydrogen as a universal energy medium.		
II	2.1 POLYMERS	8 L	
2.1. 1 2.1. 2	Basic terms involved - Monomer, degree of polymerization. Classification of polymers - Classification based on source, structure, thermal response and physical properties Molar Mass of Polymers - Number average, Weight average, Viscosity average molar mass, Monodispersity and Polydispersity Index (Numericals expected)		
2.1. 3 2.1. 4	Methods of determining Molar Masses of polymers - Viscosity method using Ostwald Viscometer, Sedimentation method		
4	2.2 PHASE EQUILIBRIA II & THERMODYNAMIC RELATIONSHIPS	7 L	
2.2. 1 2.2. 2 2.2. 3	Three component system formation of one pair of partially miscible liquids Maxwell relations—derivation and application to ideal gases Fugacity - definition, experimental method of determination		
III	BASICS OF QUANTUM CHEMISTRY	15L	

3.1	Classical theory - Introduction, limitations of classical mechanics, Black body			
	radiation, photoelectric effect, Compton effect.			
3.2				
	de-Broglie's equation, Heisenberg's uncertainty principle (Numericals expected) Progressive and Standing waves - Introduction, boundary conditions, interpretation			
	Progressive and Standing waves - Introduction, boundary conditions, interpretation			
3.3	and proportion of wave function, sometimes made made wave equation (100			
	derivation expected)			
2.4	Functions and Operators - State function and its significance, concept of operators,			
3.4	definition, addition, subtraction and multiplication of operators, commutative and non-			
	commutative operators, linear operator, Hamiltonian operator, Eigen function and			
	Eigen value (Numericals expected)			
IV	MOLECULAR SPECTROSCOPY –IV	15L		
4.1	NMR- Principle and theory, Nuclear spin, magnetic moment, nuclear 'g' factor, energy			
	levels, Larmor precession, Relaxation processes in NMR (spin-spin relaxation and			
	spin-lattice relaxation), chemical shift, δ scale, low resolution spectra. Instrumentation			
	- NMR Spectrometer			
4.2	ESR- Principle, Fundamental equation, g-value - dimensionless constant or electron g -			
4.0	factor, hyperfine splitting, hyperfine structure, Instrumentation – ESR, spectrum of			
4.3	hydrogen and deuterium			
	Laser Spectroscopy – Principle, types and applications			
	PRACTICALS	24 L		
	Course Objectives:			
	1. To train the students to handle different instruments and maintain laboratory			
	discipline			
	2. To carry out the experiments mentioned in the course and thereby be able to			
	correlate the importance of the theory with the practical experiments			
	3. To interpret information from the graphs plotted			
	Course Outcome: Learner will be able to			
	1. understand the handling of instruments and correlate practical experiments with			
	theoretical knowledge			
	2. set up different types of electrochemical cells			
	3. practice laboratory safety measures and precautions to be taken while handling			
	the instrument, electrodes and chemicals			
	1. To determine the molecular weight of poly vinyl alcohol from viscosity			
	measurements.			
	2. To determine the activity coefficient of Ag ions using a concentration cell			
	without transference.			
	3. To study the phase diagram of the three-component system water –			
	chloroform / toluene – acetic acid.			
	4. To titrate a mixture of weak acid and strong acid against a strong base and to			
	determine the amount of each acid in the mixture conductometrically.			
	5. To plot the graphs of mathematical functions – linear, exponential and			
	trigonometric and identify whether they are acceptable or non-acceptable			
	6. To determine the number of electrons in the redox reaction between ferrous			
	ammonium sulphate and ceric sulphate potentiometrically			
	7. To determine acidic and basic dissociation constants of amino acid and hence to			
	calculate the isoelectric point.			
	calculate the isoelectric point.			

Reference

Theory

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co. Ltd.
- 2. Physical Chemistry, P.C. Rakshit, 6 Edition, 2001, Sarat Book Distributors, Kolkota.
- 3. Fundamental of Molecular Spectroscopy, 4th Edn. Colin N Banwell and Elaine McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.
- 4. Physical Chemistry, G.M. Barrow, 6^a Edition (2007), Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 5. The Elements of Physical Chemistry, P.W. Atkins, 2rd Edition, Oxford University Press Oxford.
- 6. Polymer Science, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.
- 7. Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan, New Age International (P) Ltd., Publishers, 2011.
- 8. Physical Chemistry, Keith J Laidler, John H. Meiser, 2nd Edition, CBS publication and distributors Pvt. Ltd.

Practical

- 1. 1. Experiments in Physical Chemistry C.W. Garland, J.W. Nibler and D.P. Shoemaker, McGraw Hill New York 8th Edition (2003)
- 2. Practical Physical chemistry, Vishwanathan B. and Raghavan P.S. Viva Books (2017)
- 3. Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001

NAME OF THE COURSE	INORGANIC CHEMISTRY		
CLASS	TYBSc		
COURSE CODE	SBSCHE602		
NUMBER OF CREDITS	2.5		
NUMBER OF LECTURES PER	4		
WEEK			
TOTAL NUMBER OF LECTURES	60		
PER SEMESTER			
EVALUATION METHOD	INTERNAL	SEMESTER END	
	ASSESSMENT	EXAMINATION	
TOTAL MARKS	25	75	
PASSING MARKS	10	30	

COURSE OBJECTIVES:

CO 1.	To build basic concepts of coordination chemistry using crystal field and molecular orbital theory
CO 2.	To introduce basic concepts of inorganic spectroscopy
CO 3.	To understand methods of preparation and reactions of organometallic compounds of main group elements
CO 4.	To understand properties of group 17 &18 elements and to learn preparation of interhalogen and pseudohalogens

CLO 1.	calculate crystal field energies of given molecules and construct molecular orbital
	diagrams for coordination complexes
CLO 2.	calculate ground term symbols for simple inorganic molecules
CLO 3.	write general methods of preparations and reactions of organometallic compounds of
	main group elements
CLO 4.	compare and contrast properties of group 17&18 and write synthesis and assign
	structures to interhalogens and pseudohalogens

Un it	TOPIC	Lectu re
I	THEORY OF METAL LIGAND BOND – I	
1.1	Introduction to Crystal field theory, splitting of d orbitals in octahedral, tetrahedral and square planar complexes. Distortions from octahedral geometry. Crystal field splitting parameter: calculation and factors affecting it. Spectrochemical series. Consequences of crystal field splitting. Limitations of CFT. Evidence for covalent bonding in complexes. Molecular orbital theory for coordination compounds, molecular orbital diagrams depicting sigma bonding only for $[Ti(H_2O)_6]^{3+}$ $[FeF_6]^4$, $[Fe(CN)_6]^4$, $[Co(NH_3)_6]^{3+}$, $[CoF_6]^{3-}$	11L 4L
II	THEORY OF METAL LIGAND BOND – II	
2.1	Stability of complexes: Types of stability- thermodynamic and kinetic, factors affecting thermodynamic stability. Stability constants and inter-relationship. Reactivity of complexes: Types of reactions, inert and labile complexes. Ligand	5L 5L
	substitution reactions (associative and dissociative mechanism), acid and base hydrolysis and anation reactions.	
2.3	Electronic spectra: Origin, types of electronic transition in coordination compounds. Selection rules. Term and term symbols for ground state determination	5L
III	ORGANOMETALLIC CHEMISTRY – II	
3.1	Organometallic compounds of the main group: Introduction, general methods of preparation and reactions, application in medicine and agriculture.	6L
3.2	Metallocenes with special reference to Ferrocene: Introduction, methods of preparation, physical and chemical properties, structure on the basis of VBT.	3L
3.3	Catalysis: Overview of catalysis (homogenous and heterogenous catalysis), basic steps involved in homogeneous catalysis. Important catalytic reactions with mechanism (hydroformylation, coupling reaction, cross coupling reaction)	6L
IV	Chemistry of group 17 & 18 elements.	
4.1	Comparative Chemistry of group 17 elements: Introduction and general properties. Anomalous behavior of fluorine. Oxyacids of chlorine and structure (VSEPR). Inter halogens: Preparation, properties and structure (VSEPR). Pseudo halogens: Preparation, properties and structure (VSEPR)	8L
4.2	Comparative Chemistry of group 18 elements: Introduction, historical perspective and general properties. Isolation of gases. Application of inert gases. Compounds of Xenon (oxides, fluorides, oxyflourides) - preparation and structure (VSEPR).	7L

PRAC	CTICALS	24 L
Learn	ing objectives	
1.	To prepare ,characterize and estimate inorganic complexes	
2.	To learn to perform complexometric titrations for given metal ions	
3.	To estimate chlorine from a commercial sample	
Learn	ing outcomes: The learner will be able to	
1.	synthesis, analyze and calculate crystal field stabilization energy of inorganic	
	complexes	
2.	estimate metal ions from a given sample complexometrically	
	analyze commercial sample for chlorine content by redox titration	
1.	Preparation of bisethylenediammine iron sulphate complex.	
2.	Preparation of tris acetylacetonato iron complex.	
3.	Estimation of iron (redox titration) in tris acetylacetonato iron complex.	
4.	Estimation of aluminium complexometrically. (Standardization of EDTA expected)	
5.	Estimation of chlorine (iodometrically) in a commercial sample of bleaching powder.	
6.	Controlled synthesis of copper oxalate hydrate complexes.	
7.	To determine the wavelength of maximum absorption and calculate the value of 10Dq for any two complexes spectrophotometrically.	

Reference

Theory

- 1. Concise Inorganic Chemistry, J.D. Lee, 4th Edn, ELBS
- 2. Inorganic Chemistry: Principles of Structure and Reactivity, James E. Huheey
- 3. Mechanisms of Inorganic Chemistry, Basolo F and Pearson R.C., John Wiley & Sons, NY,
- 4. Organometallic Chemistry: A Unified Approach, Ram Charan Mehrotra, New Age International.
- 5. Inorganic Chemistry, D. F. Shriver and P. W. Atkins, 3rd edition, Oxford University Press (1999)
- 6. Advanced Inorganic Chemistry, Cotton and Wilkinson, 3¹¹ Edition.

Practical

- 1. Practical Inorganic Chemistry, Shikha Gulati, JL Sharma, Shagun Manocha, CBS Publishers and distributors.
- 2. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- 3. Advanced Experiments in Inorganic Chemistry, G. N. Mukherjee, 1st Edn, 2010, U.N. Dhur & Sons Pvt Ltd.

NAME OF THE COURSE	ORGANIC CHEMISTRY
CLASS	TYBSc
COURSE CODE	SBSCHE603
NUMBER OF CREDITS	2.5
NUMBER OF LECTURES PER	4
WEEK	
TOTAL NUMBER OF LECTURES	60

PER SEMESTER		
EVALUATION METHOD	INTERNAL	SEMESTER END
	ASSESSMENT	EXAMINATION
TOTAL MARKS	25	75
PASSING MARKS	10	30

COURSE OBJECTIVES:

Learner will understand the basic principles of

CO 1.	Molecular spectroscopy
CO 2.	stereochemical reactions
CO 3.	Biomolecules, polymers and polymerisation
CO 4.	Heterocyclic compounds of one heteroatom

CLO 1.	interpret spectral data in identification of various organic molecules	
CLO 2.	identify stereospecific and stereoselective reactions and compare the sterochemistry of	
	the product.	
CLO 3.	Convert open chain and Haworth structures of carbohydrates.identify the reducing, non	
	reducing, mono, di and polysaccharides and the reactions. Predict method of synthesis	
	for biomolecules.	
CLO 4.	Predict the reactivity, and products reactions of heterocyclic compounds.	
	Identify the monomer and polymer unit for various polymers and their uses, write a	
	mechanism various methods of polymerization.	

Unit	TOPIC	Lecture
I	SPECTROSCOPY-I (UV-VIS, IR AND 1H NMR)	15L
1.1	Introduction - Electromagnetic spectrum, units of wavelength and	
	frequency	
1.2	UV-VIS spectroscopy - Basic theory, solvents, nature of UV-VIS	
	spectrum, concept of chromophore, auxochrome, bathochromic shift,	
	hypsochromic shift, hyperchromic and hypochromic effects,	
	chromophore - chromophore and chromophore – auxochrome	
	interactions. Calculation of absorption maxima by Woodward - Fischer	
1.3	Rule for conjugated polyenes. Applications of UV-VIS spectroscopy IR Spectroscopy- Basic theory, selection rule, nature of IR spectrum,	
1.3	characteristic vibrational frequencies of functional groups, fingerprint	
	region. Applications of IR Spectroscopy.	
1.4	1H NMR Spectroscopy - Basic theory of 1H NMR, nature of	
	1H NMR spectrum, chemical shift (∂ unit), standard for 1H	
	•	
	NMR, solvents used. Factors affecting chemical shift -	
	inductive effect and anisotropic effect (with reference to	
	C=C, C≡C, C=O and benzene ring). Spin- spin coupling and	
1.5	coupling constant. Application of deuterium exchange	
	technique. Application of 1H NMR in structure determination	
	Mass Spectrometry- Basic theory. Nature of mass spectrum. General	

1.6	rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement.	
	Spectral characteristics of following classes of organic compounds,	
	including benzene and mono substituted benzenes with respect to UV-	
	VIS, IR, 1H NMR - a) alkanes b) alkenes and polyenes c) alkynes	
	d) haloalkanes e) alcohols f) carbonyl compounds g) ethers h)	
1.7	carboxylic acids i) esters j) amines k) amides (broad regions	
	characteristic of different groups are expected).	
	Problems of structure elucidation of simple organic compounds using	
	individual or combined use of the UV-VIS, IR, 1H NMR and Mass	
	spectroscopic techniques. (Index of hydrogen deficiency expected).	
II	2.1 STEREOCHEMISTRY- IV	7 L
2.1.1	Stereoselectivity and stereospecificity - Idea of enantioselectivity (ee)	
	and diastereoselectivity (de), Topicity - enantiotopic and diastereotopic	
	atoms, groups and faces.	
2.1.2	Substitution reactions - SN ₁ , SN ₂ , SNi (reaction of alcohol with thionyl	
	chloride).	
2.1.3	Elimination reactions - E ₂ -Base induced dehydrohalogenation of 1-	
214	bromo-1, 2- diphenylpropane.	
2.1.4	Addition reactions to olefins - a) catalytic hydrogenation b)	
	bromination (electrophilic anti addition) c) HX d) synhydroxylation	
	with OsO ₄ and KMnO ₄ e) epoxidation followed by hydrolysis 2.2 NAME REACTIONS AND SYNTHETIC APPLICATIONS	8L
	a)Claisen Condensation b) Michael Reaction c) Oppenauer	OL
	Oxidation d) Stobbe Condensation e) Wolff-Kishner Reduction	
	f) McMurry Reaction	
III	3.1Carbohydrates	10L
3.1.1	Introduction - Sources, classification, reducing and non-reducing	
	sugars, D and L- notations.	
3.1.2	Structures of Monosaccharides - Open chain structures of aldoses and	
	ketoses, ring structures of aldohexoses, aldopentoses and ketohexoses.	
3.1.3	Inter conversions - open chain and Haworth forms of monosaccharides	
2.1.1	with 5 and 6 carbons	
3.1.4	Determination of open chain configurations of Monosaccharides -	
215	Configuration of D (+) Glucose and D (-) Fructose Stereoisomers of Monosaccharides - Enantiomers and	
3.1.5	diastereoisomers of monosaccharides, epimers, anomers, mutarotation	
	(with mechanism) in D-Glucose.	
3.1.6	Chain lengthening and shortening reactions: Kiliani-Fischer synthesis,	
3.1.0	Wohl's method.	
3.1.7	Disaccharides – introduction and structures of sucrose and maltose.	
	Glycosides - General structure giving indican as an example.	
	3.2 AMINO ACIDS AND PROTEINS	3L
3.2.1	Amino acids - Introduction, Classification, syntheses of amino acids-	
	Strecker synthesis, Amidomalonate synthesis and Erlenmeyer	
	Azalactone synthesis	
3.2.2	Polypeptides - Introduction, peptide bond, Merrifields solid phase	
	peptide synthesis, Bergmann method	
3.2.3	Proteins - Structure, classification, properties, denaturation	

2.2.4	C		
3.2.4	Separation and purification of proteins - Gel filtration chromatography,		
	electrophoresis	21	
2.2.1	3.3 NUCLEIC ACIDS	2L	
3.3.1	Introduction, classification of nucleic acids.		
3.3.2	Structures of sugars and bases in nucleic acids.		
3.3.3	Structures of nucleosides and nucleotides in DNA and RNA		
3.3.4	Base pairing in nucleic acids		
3.3.5	Importance of nucleic acids - self duplication and protein synthesis		
IV	4.1 POLYMERS	8L	
4.1.1	Introduction - General idea of monomers, polymers and		
	polymerization, natural and synthetic polymers, homopolymers and		
	copolymers, classification of polymers. Copolymers – alternating,		
	block, random and graft.		
4.1.2	Mechanism of free radical, cationic and anionic addition		
4.1.3	polymerisation.		
	Stereochemistry of polymers -Tacticity, role of Ziegler-Natta catalyst		
	(coordination polymerization) in directing the tacticity in		
4.1.4	polypropylene (no mechanism).		
	Elastomers - Natural and synthetic rubbers. Diene polymerization -		
	1,2-and 1,4-addition (cis and trans) polymerization of isoprene. 1,3-		
4.1.5	Butadiene- styrene copolymer.		
	Preparation and uses of polymers-		
	(a) Addition polymers - (i) polyethylene (ii) polypropylene (iii) PVC		
	(iv) polystyrene (v) polyacrylonitrile (vi) polyvinylalcohol (vii) poly		
	(tetrafluoroethelyene); b) Condensation polymers –		
	(i) polyesters (ii) polyamides (Nylon-6, Nylon-66) (iii) polyurethans		
	(iv) phenol-formaldehyde resin (v) urea- formaldehyde resin (vi) epoxy		
4.1.6	resin (vii) polycarbonates (viii) saran (ix) SAN (x) ABS		
4.1.7	Additives to polymers - Plasticizers, stabilizers and fillers		
	Recyclable polymers - Biodegradable polymers and their uses.		
	Biomedical uses of polymers.		
	(*Identification of monomers in a given polymer and knowing the		
	structure of a polymer from a given set of monomers is expected)		
	4.2 HETEROCYCLIC CHEMISTRY	7L	
4.2.1	Introduction - Electronic structure and aromaticity of furan, pyrrole,		
	thiophene and pyridine		
4.2.2	Synthesis - Synthesis of furans, pyrroles, and thiophenes by Paal Knorr		
	synthesis. Pyridine by Hantzsch synthesis from 1,5-diketones		
4.2.3	Reactivity - Reactivity towards electrophilic substitution reactions- of		
	furan, pyrrole, thiophene on the basis of stability of intermediate and		
	pyridine on the basis of electron distribution. Nucleophilic substitution		
	of pyridine on the basis of electron distribution		
4.2.4	Reactions of heterocycles - furan, pyrrole and thiophene:		
	Halogenation, Nitration, sulphonation, Vilsmeierformylation reaction,		
	Friedal-crafts reaction		
	Furan - Diels-Alder reaction, ring opening of furan		
	Pyrrole - Acidity and basicity of pyrrole- comparison of basicity of		
	pyridine, pyrrole and pyrrolidine, Acid catalysed polymerisation of		
	pyrrole		
	Pyridine - Basicity, Comparison of basicity of pyridine pyrrole and		
	piperidene Suphonation of pyridine, with and without catalyst.		

Reduction. Oxidation of alkyl pyridines and action of sodamide (Chichibabin reaction) **PRACTICALS** 24L Learning objective: 1. To understand the method and concept of separation of a binary mixture quantitatively by physical method 2. To train the learners to perform qualitative analysis and identify a component 3. To understand the method of purification of the components. 4. To develop the skill of determining physical constant of compounds 5. To help learners to prepare synthetically useful organic compounds. 6. To acquaint learners with chromatographic techniques 7. To interpret spectrum Learning outcomes:Learners will be able to 1. identity the nature of a binary mixture and separate the mixture quantitatively. 2. To enable the students to develop skills in organic qualitative analysis 3. To enable students to purify compounds by distilling technique 4. To prepare organic compounds and understand the course of the reaction with the help of TLC 5. To elucidate the structure of a compound based on the spectral data 1. Organic Separation: Separation of a binary mixture: Type of mixture, separation and identification (micro scale) of one component through systematic scheme of identification. 2. Types: a) Volatile Liquid + Solid b) Volatile Liquid + Nonvolatile liquid (Volatile ~ 6-8mL, Non-volatile ~ 4-6 mL) 3. Preparation of organic compounds: Preparation of organic compound as per the procedure given, measuring the mass of crude, purification of the separated product by crystallization and recording of the m.p. (Quantity of the reactant to be given: 1 g) 4. Preparations: a.2- Naphthol to Methyl-2-naphthyl ether b.Phthalic anhydride to Phthalimide c.p-Bromoacetanilide to p-bromoaniline. d.Phthalic anhydride to anthranilic acid (2 step preparation). *Demonstration of TLC for any of the above reactions to understand the progress of the reaction Students will identify the compound based on the spectra provided

(NMR, IR and Mass) and plan a synthesis for the same compound

Theory

- 1. Organic chemistry, T.W Graham, Solomons Craig, B Fryhle
- 2. Organic Chemistry, Jonathan Clayden, Nick Greeves, Stuart Warren and Peter Wothers, Oxford University Press.
- 3. A Guidebook to mechanism in Organic Chemistry, Peter Sykes, 6th Edition, Pearson Education, New Delhi.
- 4. Organic Chemistry, 8th Edition John McMurry.
- 5. Stereochemistry By Nasipuri
- 6. Stereochemistry, P.S. Kalsi, 4^aEdition, New age International Limited.
- 7. Name Reactions in Heterocyclic Chemistry-Jie Jack Li, Wiley Interscience publications, 2005.
- 8. Name Reactions- Jie Jack Li, 4th Edition, Springer Pub.
- 9. Lehninger Principles of Biochemistry, 7th Edition, David Nelson and Michael Cox, Publisher W.H Freeman
- 10. IUPAC Nomenclature by S.C.Pal
- 11. Chemistry of Natural Products, O.P.Agarwal
- 12. Chemistry of Natural Products, Chatwal Anand Vol I and II

Practical

- 1. Practical Organic Chemistry A.I. Vogel
- 2. Practical Organic Chemistry- Middleton
- 3. Practical Organic Chemistry- O.P. Aggarwal

NAME OF THE COURSE	ANALYTICAL CHEM	ISTRY	
CLASS	TYBSc		
COURSE CODE	SBSCHE604		
NUMBER OF CREDITS	2.5		
NUMBER OF LECTURES PER	4		
WEEK			
TOTAL NUMBER OF LECTURES	60		
PER SEMESTER			
EVALUATION METHOD	INTERNAL SEMESTER END		
	ASSESSMENT EXAMINATION		
TOTAL MARKS	25 75		
PASSING MARKS	MARKS 10 30		

COURSE OBJECTIVES:

CO 1.	To study various types of classical methods of titration and to determine their end
	point graphically and by calculation.
CO 2.	To learn classical and instrumental methods of chromatography as a tool for
	separation and identification.
CO 3.	To understand the principle, instrumentation and application of polarography
	and amperometry
CO 4.	To understand the principle, instrumentation and applications of
	thermogravimetry, mass spectrometry, NAA in the field of analytical chemistry.

CLO 1.	calculate the theoretical end point of titrations graphically and by calculations.
CLO 2.	comprehend theory, working and applications of TLc, PC and GC
CLO 3.	explain principle and working of polarography and amperometry and calculate
	polarographic parameters using Ilkovic equation for given data
CLO 4.	plot and interpret the thermogram for a given compound, fragmentation pattern
	in MS and explain applications of TGA, NAA and Ms in various fields.

UN IT	TOPIC	Lectu re
I	CLASSICAL METHODS OF ANALYSIS (TITRIMETRY)	
	1.1 REDOX TITRATIONS	5L
1.1. 1 1.1. 2	Introduction to Redox titrations Construction of the titration curves and calculation of Esystem in aqueous medium in case of i) One electron system (Fe ⁻² Vs Ce ⁻⁴) ii) Multielectron system (Fe ⁻² Vs MnO ₄ /Cr ₂ O ₇ ⁻²) (*Numericals expected) Theory of redox indicators, use of diphenyl amine and ferroin as indicators	
1.1.		
	1.2 COMPLEXOMETRIC TITRATIONS	5L
1.2. 1 1.2. 2 1.2. 3 1.2. 4	Introduction, construction of titration curves Use of EDTA as a titrant, absolute and conditional formation constant of metal EDTA complexes, effect of pH ion EDTA equilibria. Types of EDTA titrations Factors enhancing selectivity of EDTA as a titrant Metallochromic indicators: Theory, examples and applications	
1.2.	1.3 PRECIPITATION TITRATIONS	5L
1.3. 1 1.3. 2 1.3. 3	Argentimetric titrations, construction of the titration curves (Numericals expected) Volhard's method and Mohr's method Adsorption indicators (Fajan's method), theory and applications	
II	CHROMATOGRAPHY II	
	2.1 THIN LAYER CHROMATOGRAPHY	4L
2.1. 1 2.1. 2 2.1. 3	Introduction and Principle; Stationary and mobile phase, Sample application Methods of detection of developed spots, qualitative and quantitative analysis Applications - i) Determining purity of a given solute (ii) Following progress of a given reaction	

	2.2 PAPER CHROMATOGRAPHY	4L
2.2. 1 2.2. 2	Principle, Techniques and different modes of development - Ascending, descending and circular Applications - Separation of cations	
	2.3 GAS CHROMATOGRAPHY	7 L
2.3. 1 2.3.	Introduction and Principle of Gas chromatography (GC); Theory and terms involved Instrumentation - Block diagram and components, Types of columns, Stationary phases in GSC and GLC; Detectors: TCD, FID and ECD Interpretation of gas chromatogram, terms involved - Retention time, retention	
2.3.	volume, relative retention, resolution and HETP Applications - Qualitative and quantitative analysis Comparison between GSC and GLC	
3 2.3.	GC in hyphenated techniques	
4 2.3. 5 2.3.		
6 III	ELECTROANALYTICAL TECHNIQUES	
	3.1 POLAROGRAPHY	11L
3.1.	Difference between potentiometry and voltammetry, polarizable and non-polarizable electrodes Basic principle of polarography, H shaped polarographic cell, DME- construction,	
3.1.	working, advantages and limitations. DC polarogram - Terms involved- Residual current, Diffusion current, Limiting current, Half wave potential; Role and selection of supporting electrolyte, Interference	
3.1.	of Oxygen and its removal, Polarographic maxima and maxima suppressors, Qualitative aspects of polarography - Half wave potential E ₁₂ , factors affecting E ₁₂ . Quantitative aspect of polarography - Ilkovic's Equation -terms involved (No derivation) Quantification of Polarogram by - i) Wave height ii) Internal standard method (iii) Standard addition method	
3.1. 4 3.1. 5	Applications, Advantages and Limitations of Polarography	
	3.2 AMPEROMETRIC TITRATIONS	4L
3.2. 1 3.2.	Principle of Amperometric titrations; Rotating Platinum Electrode - Construction, advantages and limitations Titration curves with examples of Amperometric titrations Advantages and limitations of Amperometric titrations	

2		
3.2.		
IV	MISCELLANEOUS METHODS	
	4.1THERMAL METHODS	7L
4.1. 1 4.1. 2 4.1. 3 4.1. 4 4.1. 5	Introduction to various thermal methods -TGA, DTA, DSC and Thermometric titrations Thermogravimetric analysis (TGA) – Instrumentation - Block diagram of thermobalance, balance, furnace, temperature measurement and control, recorder) Factors affecting thermogram - Instrumental factors and sample characteristics Thermogram of CaC ₂ O ₄ H ₂ O and CuSO ₄ .5H ₂ O Applications: i) Determination of drying and ignition temperature range ii) Determination of percent composition of binary mixtures (Estimation of calcium and magnesium oxalate	
3	4.2 RADIOANALYTICAL METHODS	5L
4.2. 1 4.2. 2 4.2. 3	Introduction, classification of radio analytical methods Neutron activation analysis (NAA) - Principle, basic theory, Calibration curve method Advantages, limitations and applications of NAA	
	4.3 MASS SPECTROMETRY	3L
4.3. 1 4.3. 2 4.3. 3	Introduction, principle and basic theory of Mass Spectroscopy (MS) Instrumentation- Schematic diagram, components of mass spectrometer Applications of MS	
3	PRACTICALS	
	 Learning Objectives: To train learners to prepare standard solutions of known concentration. To train learners to handle and standardize analytical instruments for its optimum use. To introduce the learner to various classical and instrumental methods of analysis to real life and commercial samples. Learning Outcomes: The learner will be able to decide suitability of an instrument for its use in analysis. learn to prepare and standardise solutions with the highest degree of accuracy. analyse different samples using various methods of chemical analysis.	24L

- 1. Estimation of Magnesium from talcum powder
- **2.** Determination of Vitamin C content of a given tablet by titration against NaOH by pH metry
- 3. Determination of percentage purity of a common salt using a cation exchanger (Amberlite IR120)
- 4. Determination of the amount of fluoride in the given solution colorimetrically
- 5. Determination of phosphoric acid in cola sample using pH metry
- 6. Estimation of glucose in honey by Wilstatter's method
- 7. Statistical Evaluation of data: Rejection of data and Test of significance.

Reference

Theory

- 1. Fundamentals of analytical Chemistry, 8th Edition :Skoog , West, Holler and Crouch, India Edition
- 2. Analytical Chemistry –G.D. Christian, 6th Edition, John Wiley and Sons.
- 3. Instrumental Analysis Skoog, Holler and Crouch (2007), Cenage Learning India Private Limited (2007)
- 4. Modern analytical Chemistry- David Harvey, 2000
- 5. Thermal Methods, James Todd-Analytical Chemistry by Open Learning
- 6. Analytical Chemistry-Krupadanam David, University Press; 2012
- 7. Instrumental Methods of Analysis-Willard, Merritt, Dean and Settle, 7th Edition.
- 8. Instrumental Methods of Chemical Analysis Chatwal Anand, 5^a Edition, 2005. Himalaya Publishing House.

Practical

1. Vogel's Quantitative Chemical Analysis, 3rd edition

NAME OF THE COURSE	APPLIED COMPONENT		
CLASS	TYBSc		
COURSE CODE	SBSAPC601		
NUMBER OF CREDITS			
NUMBER OF LECTURES PER WEEK	4		
TOTAL NUMBER OF LECTURES PER	75		
SEMESTER			
EVALUATION METHOD	INTERNAL	SEMESTER END	
	ASSESSMENT	EXAMINATION	
TOTAL MARKS	25	75	
PASSING MARKS	10	30	

COURSE OBJECTIVES:

Learner will understand

CO 1.	the drug, discovery, design, development and metabolism of drugs
CO 2.	the various chemotherapeutic agents with respect to chemical structure, therapeutic
	action and uses.
CO 3.	the classification of dyes based on their structure and synthesis of dyes/drugs and their
	intermediates.
CO 4.	the use of the non-textile dyes, their properties and characteristics. The impact of the
	dyestuff industry on the environment and remediation processes

CLO 1.	Explain the process of drug discovery design and development
CLO 2.	write the synthesis of drugs and use of a drug
CLO 3	Identify and classify the dye based on their structure and write the synthesis.
CLO 4	To explain the effect of the dyestuff industry on the environment and apply the
	appropriate remediation process

		Le
UNIT	TOPIC	ct
I	1.1 DRUG DISCOVERY, DESIGN AND DEVELOPMENT	15
1.1.1	Discovery of a lead compound - Screening, drug metabolism studies and clinical observation, Lipinski's rule of 5	
1.1.2	Medicinal properties of compounds from Natural Sources - Anti-infective and anticancer properties of Turmeric (Curcumin)	
1.1.3	Development of drug - The Pharmacophore identification, modification of structure or functional group, Structure activity relationship (Sulphonamides).	
1.1.4	Structure modification to increase potency - Homologation, Chain branching and extension of the structure	
1.1.5	Computer assisted drug design	
1.1.6	Drug Metabolism - Introduction, Absorption, Distribution, Biotransformation, Excretion; Different types of chemical transformation of drugs with specific examples	
II	CHEMOTHERAPEUTIC AGENTS	
2.1	Antibiotics and antivirals - Definition; i) Amoxicillin (β- lactum antibiotics) ii) Cefpodoxime (Cephalosporins) iii) Doxycycline (Tetracyclines) iv) Levofloxacin (Quinolones) (Synthesis from 2,3,4 – Trifluro -1-nitrobenzene) v) Aciclovir/Acyclovir (Purines)	2
2.2	Antimalarials - Types and Symptoms of malaria; Pathological detection during window period (Life cycle of the parasites not to be discussed); i) Chloroquine (3-Amino quinolones) ii) Artemether(Benzodioxepins) Following combination to be discussed - Atremether-Lumefantrine (structure not expected)	1
2.3	Antihelmintics and Antifungal agents - Drugs effective in the treatment of	2

	Nematodes and Cestodes infestations; i) Diethyl carbamazine (Piperazines) ii) Albendazole (Benzimidazoles) (Synthesis from 2- Nitroaniline) iii) Clotrimazole (Imidazole) iv) Fluconazole (Triazole) (Synthesis from 1- Bromo – 2,4-difluorobenzene)	
2.4	Antiamoebic Drugs - Types of Amoebiasis - Metronidazole, Ornidazole, Tinidazole (Imidazole); Synthesis of Metronidazole from glyoxal by Debus Radziszewski imidazole route Following combination therapy to be discussed – CiprofloxacinTinidazole	
	Tonowing combination therapy to be discussed. Cipronoxacin i initiazore	1
2.5	Antitubercular and Antileprotic Drugs - Tuberculosis and leprosy - Types, Symptoms and diagnosis; General idea of Antibiotics used in their treatment; i) PAS (Amino salicylates) ii) Isoniazide (Hydrazides) iii) Pyrazinamide (Pyrazines) iv) (+) Ethambutol (Aliphatic diamines)(Synthesis from 1- Nitropropane) v) Dapsone(Sulphonamides) vi) Clofazimine (Phenazines) vii) Bedaquiline (Quinolines) Following combination therapy to be discussed - (a) Rifampin + Ethambutol +	
	Pyrazinamide (b) Rifampin + Isoniazide + Pyrazinamide	2
2.6	Antineoplastic Drugs - Causes of cancer - malignancy; Brief idea of Immuno Stimulants and depressants; i) Lomoustine (Nitrosoureas) ii) Anastrozole(Triazoles) [Synthesis from 3,5-bis (bromomethyl) toluene] iii) Cisplatin (Chloroplatinum) iv) Vinca alkaloids - Vincristine, Vinblastine, Vindesine (structure not expected)	
		2
2.7	Anti-HIV Drugs - Idea of HIV pathogenicity, Symptoms of AIDS; i) AZT/Zidovudine ii) Lamivudine iii) DDI (Purines) iv) Nevirapine (dipyridodiazepinone)	
		1
2.8	Drug Intermediates- Synthesis and uses; i) p-[2'-(5-Chloro-2-methoxy benzamido) ethyl]-benzenesulphonamide from Methyl-5-chloro-2- methoxybenzene ii) 3-(p-Chlorophenyl)-3- hydroxypiperidine from 3-Chloroacetophenone iii) Epichlorohydrine from propene	1
2.9	Nano particles in Medicinal Chemistry- Introduction; Nano based drug delivery systems- drug delivery process and mechanism; i) Cellulose ii) Dendrimers iii) liposomes iv) polymeric micelle	1
		3
	*Study of the above chemotherapeutic agents with respect to their chemical structure (not expected) chemical class, therapeutic uses, side effects and introduction to MDR wherever applicable.	
III	CLASSIFICATION AND SYNTHESIS OF SELECTED DYES BASED ON CHEMICAL CONSTITUTION	
3.1	a) Nitro Dye – i) Naphthol Yellow S b) uiAzo dyes – i) Monoazo dyes- Orange IV *(from sulphanilic acid) and Eriochrome Black T* (from β- naphthol) ii) Bisazo dyes- Congo Red* (from nitrobenzene) iii) Trisazo Dye- Direct Deep Black EW* (from benzidine)	10

	c) Diphenylmethane dye- i) Auramine O* (from N,N-dimethyl aniline) d) Triphenylmethane dye- i) Diamine series- Malachite Green* (from benzaldehyde) ii) Triamine series- Acid Magenta iii) Phenol series- Rosolic acid e) Heterocyclic Dye – i) Thiazine dyes- Methylene Blue ii) Azine dyes - Safranin T iii) Xanthene Dyes- Eosin* (from phthalic anhydride) iv) Acridine Dyes- Acriflavine f) Quinone Dyes- i) Naphthaquinone- Naphthazarin ii) Anthraquinone Dyes- Indanthrene Blue* (from anthraquinone) g) Indigoid Dyes- i) Indigo* (from aniline + monochloroacetic acid) h) Phthalocyanine Dyes- i) Monastral Fast Blue B (*synthesis of the dyes is expected)	
3.2	DYES USED IN FOOD AND COSMETICS - Properties of dyes used in food and cosmetics; Introduction to FDA and FSSAI; Commonly used food colours and their limits; Characteristics of dyes used in nail lacquers and lipsticks with some examples; Hair Dyes - Oxidative Hair coloration and non-oxidative Hair Dyes.	5
IV	4.1 NON-TEXTILE USES OF DYES	8
4.1.1	Biomedical uses of dyes - a) Dyes used in formulations (Tablets, capsules, syrups etc) - i) Indigo carmine ii) Sunset yellow iii) Tartrazine b) Biological staining agents - i) Methylene blue ii) Crystal violet iii) Safranine T c) Fluorescent stains - i) Lucifer Yellow CH/VS d) DNA markers - i) Bromophenol blue ii) Orange G iii) Cresol red e) Dyes as therapeutics - i) Mercurochrome ii) Acriflavine iii) Crystal Violet iv) Prontosil	
4.1.2 4.1.3	Colour photography - Additive and subtractive processes, dye transfer and synthesis Paper and leather dyes -Structural features and examples	
4.1.4	Miscellaneous dyes- Laser Dyes, Indicators, Security Inks, Coloured smokes and Camoflage colours	
4.2	CHROMIC MATERIALS - Thermochromism , Photochromism, electrochromism	2
	4.3 SYNTHETIC DYES - HEALTH AND ENVIRONMENTAL HAZARDS, REMEDIATION PROCESSES	5
4.3.1 4.3.2 4.3.3	Impact of the textile and leather dye industry on the environment with special emphasis on water pollution. Toxicity of dyes with respect to food colours Effluent Treatment - Brief introduction to effluent treatment plants (ETP); Primary Remediation processes – Physical Processes- i) Sedimentation ii) Aeration iii) Sorption - activated charcoal, fly ash; Secondary Remediation processes – a) Biological Remediation – i) Biosorption ii) Biodegradation; b) Chemical Remediation processes – i) Oxidation Process (Chlorination) ii) Coagulation-flocculation-Precipitation	
	PRACTICALS Course Objectives 1. To prepare drug and drug intermediates on a bench scale 2. To learn the application of colorimeter/spectrophotometer in estimation of dyes. 3. To acquaint learners with chromatographic techniques as a method of	

separation

- 4. To learn quantitative analysis of dyes.
- 5. To understand the importance of a monograph
- 6. To give the learner an exposure of the workings of an industry

Course Outcomes- The learner will be able to

- 1. Perform a synthesis of drug or drug intermediate
- 2. Analyse commercial samples of dyes using a given method.
- 3. Perform quality control of a commercial sample of drug as per Indian Pharmacopoeia

Preparation of Drugs: (any three)

- 1. p-nitroacetanlide from acetanilide
- 2. p-nitroaniline from p-nitroacetanilide
- 3. Benzocaine from 4-aminobenzoic acid
- 4. o-chlorobenzoic acid from anthranilic acid

Estimation and separation of Dyes: (any three)

- 1. Estimation of primary aromatic amine by diazotation
- 2. Estmation of coupling component by diazonium salt solution (any one)
 - a. β-Napthol b. Resorcinol
- 3. Colorimetric estimation of Methyl Orange
- 4. Separation of a mixture of dyes using TLC
- 5. Separation of Azo, Basic and Vat dyes by chemical method (Two Mixtures)

Project work

Monograph of a Drug and its assay or Case Study

Industrial Visit Compulsory to a pharmaceutical / dye industry.

References

- 1. Chemistry of Synthetic Dyes, Vol I VIII, Venkatraman K., Academic Press 1972
- 2. Chemistry of Synthetic Dyes and Pigments, Lubs H.A., Robert E Krieger Publishing Company, NY 1995
- **3.** Colour Chemistry, Heinrich Zollinger
- 4. Colour Chemistry, Allen
- 5. Colour Chemistry, Robert M Christie, 2nd Edition, Royal Society of Chemistry, 2015
- 6. Synthetic dyes, Gurdeep R. Chatwal
- 7. Chemistry of Dyes and Principles of Dyeing, V.A. Shenai; Sevak Publication, Bombay
- 8. Natural and Synthetic Organic Chemistry, O.P.Agrawal
- 9. An introduction to drugs, Singh and Rangnekar
- 10. British Pharmacopoeia
- 11. Indian Pharmacopoeia
- 12. Pharmacology and pharmacotherapeutics, Iswariah and Guruswamy, 7th Edition, Vikas Publishers
- 13. Practical Organic Chemistry, A.I. Vogel

ASSESSMENT DETAILS:

(for all the theory papers)

Internal Assessment (50 marks)

Three activities to be conducted of 25 marks each and the best of two to be

used for assessment.

Activities could be Test/ assignment/ project

Semester End Examination - External Assessment (50marks)

- The duration of the paper will be two hours.
- All modules to be covered in the exam.

Practical Assessment For Main practicals

- The total marks of the practical will be 200.
- The exam will be conducted in four sessions. Each session will have an experiment from each paper (50 marks x = 200 marks)
- Attendance in all sessions is compulsory.
- The students are allowed to write the paper if the attendance for practical is more than 75%
- To appear in the practical exam, students must bring a properly certified journal.

For Applied Component practical

- The total marks of the practical will be 100.
- The exam will be conducted in two sessions.
- Attendance in all sessions is compulsory.
- The students are allowed to write the paper if the attendance for practical is more than 75%
- To appear in the practical exam, students must bring a properly certified journal