

SOPHIA COLLEGE FOR WOMEN, (EMPOWERED AUTONOMOUS)

Affiliated to

UNIVERSITY OF MUMBAI

Programme: Science

Programme Code: SCHE6

MSc-Part II

(Syllabus for the Academic Year 2024-2025 based on the National Education Policy 2020)

Programme Outline: MSc (SEMESTER III)

Course Code	Unit No	Name of the Unit	Credits
SCHE635MJ		QUALITY IN ANALYTICAL CHEMISTRY	4
	1	Quality in Analytical Chemistry	
	2	Chromatographic Techniques - I	
	3	Chromatographic Techniques - II	
	4	Pharmaceutical Chemistry	
SCHE636MJ		ADVANCED INSTRUMENTAL	4
		TECHNIQUES	
	1	Spectral Methods – I	
	2	Spectral Methods - II	
	3	Electroanalytical Techniques	
	4	Industrially Important materials	
SCHE635MJP		QUALITY IN ANALYTICAL CHEMISTRY	2
		PRACTICAL	
SCHE636MJP		ADVANCED INSTRUMENTAL	2
		TECHNIQUES PRACTICAL	
SCHE633E		BIOANALYTICAL CHEMISTRY	2
	1	Bioanalytical Chemistry and Immunological methods	
	2	Food Analysis	
SCHE633EP		BIOANALYTICAL CHEMISTRY	2
		PRACTICAL	
SCHE631RP		Research Project	4

Programme Outline: MSc (SEMESTER IV)

Course Code	Unit No	Name of the Unit	Credits
SCHEP647MJ		ADVANCED INSTRUMENTAL	
		TECHNIQUES	4
	1	Separation Science	
	2	Chromatographic Techniques – III	
	3	Spectral Methods-III	
	4	Radiochemical and Hyphenated Techniques	
SCHE648MJ		INTELLECTUAL PROPERTY RIGHTS	4
		AND CHEMINFORMATICS	
	1	Introduction to Intellectual Property	
	2	Trade Agreements	
	3	Introduction to Cheminformatics	
	4	Applications of Cheminformatics	
SCHE647MJP		ADVANCED INSTRUMENTAL	2
		TECHNIQUES PRACTICAL	
SCHE644E		FORENSIC CHEMISTRY	2
	1	Forensic Chemistry-I	
	2	Forensic Chemistry-II	
SCHE644EP		FORENSIC CHEMISTRY PRACTICAL	2
SCHE631RP		Dissertation	6

Preamble:

The M.Sc. Programme in Analytical chemistry was started under the affiliation of Mumbai University and is now brought under Autonomy. Although the same syllabus has been retained with minor modifications structural changes are incorporated to suit the credit system under autonomy.

The objective of the M.Sc. Analytical Chemistry programme is to provide a comprehensive and in-depth understanding of the fascinating world of Analytical Chemistry. The M.Sc. Programme in Analytical Chemistry combines core and elective theory courses as well as practical courses and independent research guided by an experienced researcher from the department/industry or a national institute. Through a rigorous academic curriculum, industry training and hands-on research experience, we aim to nurture the intellectual curiosity and scientific acumen of our students, preparing them for successful careers in various sectors of the chemical sciences. On completing the programme, the students will be able to analyze and provide practical solutions to the problems within the broad/specialized field of analytical chemistry.

Our esteemed faculty members with expertise in their respective fields and with a passion for both teaching and research are committed to providing a learning environment, encouraging open discussions, and fostering collaborative research endeavors. Through their mentorship, students will have the opportunity to engage in cutting-edge research projects, pushing the boundaries of scientific knowledge and contributing to the advancement of the chemical sciences. We envision our M.Sc. (Analytical Chemistry) postgraduates act as catalysts for positive change, equipped to drive innovation, shape industries, and address societal challenges through their expertise in chemistry.

PROGRAMME OBJECTIVES

PO 1	To provide students with theoretical and applied knowledge in the interdisciplinary branches of chemistry with emphasis on qualitative and quantitative analysis.
PO 2	To expose the students to the advanced instrumental analysis through hands-on training, internships and research to make them job ready.
PO 3	To train students to address the environmental and societal issues and face the real life challenges more effectively.

PROGRAMME SPECIFIC OUTCOMES

PSO 1	Critical thinking: A student with a Master's degree in Analytical chemistry will have an in- depth theoretical and practical knowledge of the subject which will foster their critical thinking.
PSO 2	Skills in research and industrial field: Students will build a scientific temper through research, develop entrepreneurial skill and will get an exposure to work in an industrial set up.
PSO 3	Personality Development: The students will be able to handle personal, social, environmental issues and will be responsible citizens.

SEMESTER 3

NAME OF THE COURSE	QUALITY IN ANALYTICAL CHEMISTRY	
CLASS	MSC	
COURSE CODE	SCHE635MJ	
NUMBER OF CREDITS	4	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	EXAMINATION
TOTAL MARKS	50	50
PASSING MARKS	20	20

COURSE OBJECTIVES:

CO 1.	To understand the criteria for method validation.
CO 2.	To understand the principle, instrumentation and applications of different
	chromatographic techniques.
CO 3.	To understand the different methods used to reduce signal to noise
	ratio
CO 4	To understand the application of analytical chemistry from the perspective of pharmaceutical chemistry

CLO 1.	Interpret the results and improve the quality of results
CLO 2.	Describe methods used to reduce signal to noise ratio.
CLO 3	Explain supercritical fluid chromatography, affinity chromatography and ion-
	exchange in detail with applications.
CLO 4	Analyse various pharmaceutical materials.

UNIT 1	QUALITY IN ANALYTICAL CHEMISTRY	15L
1.1	Selection of the Method: sources of methods, factors to consider when	6L
	selecting a method, performance criteria for methods used, reasons for	
	incorrect analytical results, method validation, and quality by design (PAT).	
1.2	Measurement of uncertainty: Definition and evaluation of uncertainty,	4L
	putting uncertainty to use, interpretation of results and improving the quality of results.	
1.3	Signal to noise: Signal to noise ratio, sources of noise in instrumental	5L
	analysis. Signal to noise enhancement, hardware devices for noise	
	reduction, software methods for noise reduction.	
UNIT 2	CHROMATOGRAPHIC TECHNIQUES –I	15L
2.1	Ion exchange chromatography: Ion exchange equilibria, breakthrough	8L
	capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins	
	and their applications for separation of inorganic and organic compounds.	
2.2	Ion chromatography: Principle, instrumentation with special reference to	2L
	separation and suppressor columns, applications.	
3.3	Exclusion chromatography : Theory, instrumentation and applications of	5L
	gel permeation chromatography, retention behavior, inorganic molecular	
	sieves, determination of molecular weight of polymers	
UNIT 3	CHROMATOGRAPHIC TECHNIQUES –II	15L
3.1	Supercritical fluid Chromatography: Theory, concept of critical state of matter	8L
	and supercritical state, types of supercritical fluids, instrumentation, applications to	
	environmental, food, pharmaceuticals and polymeric analysis.	
3.2	Affinity Chromatography: principle, instrumentation and applications	4L
3.3	2D TLC: Preparative TLC, Multi development TLC	3L
UNIT 4	PHARMACEUTICAL CHEMISTRY	
4.1	General idea regarding the Pharmaceutical Industry, definition and	7L
	classification of drugs, introduction to pharmaceutical formulations,	
	classification of dosage forms. Role of FDA in pharmaceutical industries.	
4.2	Sources of impurities in pharmaceutical products and raw materials.	4L
4.3	Standardization of finished products and their characteristics, official methods of quality control.	4L

1. Quality in the analytical chemistry laboratory, E Prichard, John Wiley and sons N.Y 1997.

2. Quality assurance in analytical Chemistry, W Funk, V Dammann, G. Donnevert VCH Weinheim1995.

3. Amit S. Patil *et. al.*, Quality by Design (QbD) : A new concept for development of Quality pharmaceuticals, International Journal of Pharmaceutical Quality Assurance; 4(2); 13-19.

4. Lalit Singh and Vijay Sharma, Quality by Design (QbD) Approach in

Pharmaceuticals: Status, Challenges and Next Steps, Drug Delivery Letters, 2015,

5. 2-8. Quality in the analytical chemistry laboratory, E Prichard, John Wiley and sons N.Y 1997

6. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West, Saonders, College publication.

- 7. Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969
- 8. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- 9. Analytical Chemistry, G. D. Christian, Wiley
- 10. Extraction Chromatography T. Braun, G. Ghersene, Elsevier Publications 1978.
- 11. Supercritical Fluid Extraction, Larry Taylor Wiley publishers N.Y. 1996
- 12. Ion exchange separation in analytical chemistry O Samuelson John Wiley 2nd edition 1963
- 13. Ion exchange chromatography Ed H.F Walton Howden, Hutchenson and Rossing 1976
- 14. Chromatographic and electrophoretic techniques I Smith Menemann Interscience 1960

NAME OF THE COURSE	QUALITY IN ANALYTICAL	
	CHEMISTRY PRACTI	CAL
CLASS	MSC	
COURSE CODE	SCHE635MJP	
NUMBER OF CREDITS	2	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	EXAMINATION
TOTAL MARKS	-	50
PASSING MARKS	-	20

COURSE OBJECTIVES:

CO 1.	To acquaint learners with spectroscopic techniques
CO 2.	To learn how to analyse drug samples

CLO 1.	Apply the knowledge to decide the most appropriate method of analysis based on requirements.
CLO 2.	Analyse various drug samples using a suitable method.

QUALITY IN ANALYTICAL CHEMISTRY PRACTICAL
1.Estimation of drugs by non-aqueous titration:
a)Glycine
b) Sodium Benzoate
c) Pyridoxine hydrochloride
d) Mebendazole.
2. To determine the amount of Aspirin in a commercial sample by spectrophotometry.
3. Estimation of Ca in Ca-pentathonate/ calcium lactate tablets.
4. To determine the amount of iron in a tablet sample titrimetrically.
5. Determination of the pK value of an indicator.
6.Determination of percentage purity of methylene blue indicator by titrimetry.

- 1. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 2. Standard methods of chemical analysis, F. J. Welcher
- 3. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 4. W.W.Scott. "Standard methods of Chemical Analysis", Vol.I, Van Nostrand Company, Inc., 1939.

NAME OF THE COURSE	ADVANCED INSTRUMENTAL	
	TECHNIQUES	
CLASS	MSC	
COURSE CODE	SCHE636MJ	
NUMBER OF CREDITS	4	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	EXAMINATION
TOTAL MARKS	50	50
PASSING MARKS	20	20

CO 1.	To understand the principle and working of various spectral
	methods
CO 2.	To understand the applications of the techniques discussed
CO 3.	To understand the concepts of the different techniques i.e.
	spectroscopic/electro-analytical.

CLO 1.	Differentiate and identify the appropriate technique of analysis	
	for a sample.	
CLO 2.	Interpret the esr/ mossbauer spectrum.	
CLO 3.	Solve numericals based on the topics covered	

UNIT 1	SPECTRAL METHODS- I	15L
1.1	Surface Analytical Techniques: Preparation of the surface, difficulties involved in	
	the surface analysis.	
1.2	Principle, instrumentation and applications of the following:	
	A) Secondary Ion mass spectroscopy.	4L 5L
	B) Particle-Induced X-Ray Emission	51
	C) Low-Energy Ion Scattering and Rutherford Backscattering	5L
UNIT 2	SPECTRAL METHODS- II	15L
	Principle, Instrumentation, and Applications of:	
	A) Electron Spin Resonance Spectroscopy (ESR)	5L
	B) Mossbauer's Spectroscopy	5L
	C) Atomic Emission Spectroscopy- based on plasma and electrical	5L
	discharge sources.	
UNIT 3	ELECTROANALYTICAL TECHNIQUES	15L
3.1	Current Sampled (TAST) Polarography, Normal and Differential Pulse Polarography	3L
3.2	Potential Sweep methods- Linear Sweep Voltammetry and Cyclic voltammetry.	3L
3.3	Potential Step method- Chronoamperometry	2L
3.4	Controlled potential technique- Chronopotentiometry	2L
3.5	Stripping Voltammetry- anodic, cathodic, and adsorption	2L

3.6	Chemically and electrolytically modified electrodes and ultra-micro electrodes in voltammetry	3L
UNIT 4	INDUSTRIALLY IMPORTANT MATERIALS	15L
4.1	Insecticides, Pesticides: definition, classification and biodegradation	2L
4.2	Soaps and Detergents: classification and composition, qualitative and quantitative analysis of detergents - alkalinity, active ingredients and oxygen releasing capacity. Biodegradable detergents	4L
4.3	Petrochemical products: crude oils, fuels, and calorific values, fractional distillation process and fractions, properties of fuel, composition of fuel, flashpoint, fire point, corrosion test, carbon residue and impact on environment.	4L
4.4	Paints and pigments: Types of paints pigments, determination of volatile and non - volatile components, Flash point (significance and method of determination), separation and analysis of pigments, binders and thinners.	4L
4.5	Role of organosilicones in paints and their impact on environment.	1L

1. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986)

2. Fundamentals of Analytical Chemistry, D .A. Skoog and D. M. West and F. J. Holler Holt- Saunders 6th Edition (1992)

3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 5th Edition (1998)

4. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt, Jr. J. A. Dean and F.

A. Settle Jr 6th Ed CBS (1986)

5. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr 7th Ed CBS (1986)

6. Introduction to Instrumental Analysis, R. D. Braun, Mc Graw Hill (1987)

7. Electrochemical Methods, A. J. Bard and L.R. Faulkner, John Wiley, New York, (1980)

8. Electroanalytical Chemistry, J.J. Lingane, 2nd Ed Interscience, New York (1958)

9. Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, 1980.

10. Electroanalytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes)

11. Techniques and mechanism of electrochemistry, P. A. Christian and A. Hamnett,

Blachie Academic and Professional (1994)

Wilson and Wilson's Comprehensive Analytical Chemistry, Ed. G. Svehla. (A series of Volumes)
 Treatise on Analytical Chemistry, Eds. I. M. Kolthoff and Others, Interscience Pub. (A series of volumes).

14. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, (A series of volumes)

15. Polarographic Methods in Analytical Chemistry, M. G. Arora, Anmol Publications Pvt Ltd 16. NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry *R. V. Parish*. Ellis Horwood, Chichester

17. Analytical, Agricultural Chemistry S. L Chpra J.S Kanwar Kalyani publication.

NAME OF THE COURSE	ADVANCED INSTRUMENTAL	
	TECHNIQUES PRACTICAL	
CLASS	MSC	
COURSE CODE	SCHE636MJP	
NUMBER OF CREDITS	2	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	-	50
PASSING MARKS		20

COURSE OBJECTIVES:

CO 1.	To acquaint learners with spectroscopic techniques
CO 2.	To familiarize students with the SOPs and train them in handling

CLO 1.	Apply the knowledge to decide the most appropriate method of analysis based on requirements.
CLO 2.	Use technical skills to work with various instruments

ADVANCED INSTRUMENTAL TECHNIQUES PRACTICAL	
 Estimation of fluoride in a toothpaste sample by spectrophotometry. Determination of silica by molybdenum blue method by spectrophotometry. Determination of copper and bismuth in mixture by photometric titration. 	
4. Estimation of strong acid, weak acid and salt in the given mixture conductometrically.	
5. Analysis of mixture of carbonate and bicarbonate (present in ppm range) using pHmetry.	
6. Estimation of Na ⁺ in dairy whitener by flame photometry.	

7. Determination of nicotine content in tobacco using potentiometry.	-
8. Determination of iron in iron wire using KMnO ₄	

- 1. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 2. Standard methods of chemical analysis, F. J. Welcher
- 3. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 4. W.W.Scott."Standard methods of Chemical Analysis", Vol.I, Van Nostrand Company, Inc., 1939.

NAME OF THE COURSE	BIOANALYTICAL CHEMISTRY AND FOOD	
	ANALYSIS	
CLASS	MSC	
COURSE CODE	SCHE633E	
NUMBER OF CREDITS	2	
NUMBER OF LECTURES PER	2	
WEEK		
TOTAL NUMBER OF LECTURES	30	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	50	-
PASSING MARKS	- 20	

COURSE OBJECTIVES:

CO 1.	To understand the application of analytical chemistry in the chemical and biological fields
CO 2.	To understand immunological methods and food analysis using a variety of experimental techniques
CO 3.	To introduce quality assessment of dairy products and species

CLO 1.	Explain the principle of methods used for the analysis of biological	
	sample, food and food additives.	
CLO 2.	Differentiate and identify the techniques of analysis	
CLO 3.	Apply the knowledge for estimating dairy products	

UNIT 1	BIOANALYTICAL CHEMISTRY AND IMMUNOLOGICAL	15L
	METHODS	
1.1	Composition of body fluids and detection of abnormal levels of glucose,	5L
	creatinine, uric acid in blood, protein, ketone bodies and bilirubin in urine leading	
	to diagnosis of diseases.	
1.2	General processes of immune response, antigen antibody reactions, precipitation	5L
	reactions, radio, enzyme and fluoro-immuno assays.	
1.3	Estimation of enzymes, carbohydrates, proteins, essential amino acids and	5L
	lipids.	
UNIT 2	FOOD ANALYSIS	15L
2.1	Food Additives – General idea about Food processing and preservation,	2L
	Chemical preservatives, fortifying agents, emulsifiers, texturizing agents,	
	flavours, colors, artificial sweeteners, enzymes. Analysis of food products	
	for flavoring agents and colour.	
3.3	Food Contaminants- Trace metals and pesticide residues, contaminants	2L
	from industrial wastes (polychlorinated polyphenols, dioxins), toxicants	
	formed during food processing (aromatic hydrocarbons, nitrosamines),	
	veterinary drug residues and melamine contaminants.	
4.3	Food packaging – Introduction, types of packing materials,	11L
	properties and industrial requirements.	
	Processing and Quality requirements of Milk and milk products(cheese,	
	butter and ice cream), vegetables and fruits, meat and meat products.	
	Analysis of Milk – Fat content, proteins, acidity, bacteriological	
	quality and milk adulterants. Analysis of Oils and Fats – acid value, sap value, iodine value,	
	determination of rancidity and antioxidants.	
	Analysis of spices (cloves, cinnamon, pepper, mustard),	
	determination of volatile oils and fixed oils.	
DEFEDNCI		

1.General, organic and biological chemistry, H. Stephen Stoker, Cengage Learning.

2. Advance dairy chemistry, vol 3, P. F. Fox, P. L. H. McSweeney Springer.

3. Physiological fluid dynamics vol 3, Nanjanagud Venkatanarayanasastry Chandrasekhara Swamy Narosa Pub. House, 1992

4. Molecular Biological and Immunological Techniques and Applications for food, edited by Bert Popping, Carmen Diaz-Amigo, Katrin Hoenicke, John Wiley & sons.

5. Food Analysis: Theory and practice, Yeshajahu Pomeranz, Clifton E. Meloan, Springer.

6. Food Analysis, Edited by S. Suzanne Nielsen, Springer

7. Analytical Biochemistry, D, J. Homes and H. Peck, Longman (1983)

8. Bioanalytical Chemistry, S. R. Mikkelesen and E. Corton, John Wiley and sons 2004

NAME OF THE COURSE	BIOANALYTICAL CHEMISTRY AND		
	FOOD ANALYSIS PRACTICAL		
CLASS	MSC		
COURSE CODE	SCHE633EP		
NUMBER OF CREDITS	2		
NUMBER OF LECTURES PER	2		
WEEK			
TOTAL NUMBER OF LECTURES	30		
PER SEMESTER			
EVALUATION METHOD	CONTINUOUS	SUMMATIVE	
	ASSESSMENT	ASSESSMENT	
TOTAL MARKS	50	-	
PASSING MARKS	20	-	

CO 1.	To acquaint learners with spectroscopic techniques and separation techniques.
CO 2.	To learn how to analyse food samples.

CLO 1.	Apply the knowledge to decide the most appropriate method of analysis based on requirements.
CLO 2.	Use technical skills to work with various instruments

BIOANALYTICAL CHEMISTRY AND FOOD ANALYSIS PRACTICAL	
1. Total reducing sugars before and after inversion in honey using: Cole's Ferricyanide method	
2. Estimation of Vitamin C in lemon Juice/squash by Dichlorophenol- indophenol method	
3. Iodine value of oil /fat- Wijs Solution	
4. Analysis of Calcium, Iron and phosphorus in milk powder.	

5.Determination and identification of given oil using SAP value.	
6. Estimation of Aldehyde in lemon grass oil / Cinnamon oil	
7. Estimation of Glucose by Folin-Wu method	
8. Estimation of Ni in tea powder.	

- 1. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 2. Standard methods of chemical analysis, F. J. Welcher
- 3. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 4. W.W.Scott."Standard methods of Chemical Analysis", Vol.I, Van Nostrand Company, Inc., 1939.

NAME OF THE COURSE	ENVIRONMENTAL CHEMISTRY		
CLASS	MSC		
COURSE CODE	SCHE633E		
NUMBER OF CREDITS	2		
NUMBER OF LECTURES PER	2		
WEEK			
TOTAL NUMBER OF LECTURES	30		
PER SEMESTER			
EVALUATION METHOD	CONTINUOUS	SUMMATIVE	
	ASSESSMENT	ASSESSMENT	
TOTAL MARKS	50	-	
PASSING MARKS	20 -		

COURSE OBJECTIVES:

CO 1.	To introduce learners to different types of pollution, analysis of	
	pollutants and environmental laws and regulations.	
CO 2.	To provide them with a scientific background for understanding environmental	
	problems, monitoring and controlling the pollution	

CLO 1.	Interpret quality parameters, Environmental regulations with reference	
	to air, soil and water.	
CLO 2.	Apply Sampling techniques and analyses of various environmental material	

UNIT 1	ENVIRONMENTAL POLLUTION	15L
1.1	Sampling and analysis of air pollutants: Particulate matter, aerosols, ammonia and organic vapors.	2L
1.2	Soil pollution and Soil Analysis: sources of soil pollution and their control, sampling of soil, determination of water holding capacity, determination total nitrogen, ammonia and nitrates, fertility of soil and effect of pollution on it, synthetic fertilizers and their long term effect on soil quality.	2L
1.3	Carbon credit and global issues related to air pollution.	2L
1.4	Environmental Legislation: role of pollution control boards, article 48A and 51A, Motor Vehicle Act and method of analysis with respect to PUC.	3L
1.5	Environmental Audits: concept of audit, authorities, evaluation methodology, benefits and certification	3L
UNIT 2	WATER QUALITY STANDARDS	15L
2.1	Water: quality and requirements of potable water, direct and indirect pollutants in potable water reservoirs, quality of potable water from natural sources.	6L
2.2	Bore well water quality and analytical parameters. Quality of bottled mineral water	3L
2.3	Process of purification of bore well water to bottled mineral water	2L
2.4	Regulatory requirements for packaged drinking water	4L

REFERNCES

- 1. Environmental Chemistry, A. K. De, 2nd ED. Wiley (1989).
- 2. Environmental Pollution Analysis, S. M. Khopkar, John Wiely (1993).
- 3. Air Pollution Sampling And Analysis, Sharad Gokhale, IIT Guwahati, May 2009.
- 4. Environmental Pollution Analysis, S. M. Khopkar, New Age International publication (2011).

5. Water And Water Pollution (hand book) Ed., Seonard'l Ciacere, Vol I to IV, Marcel Dekker inc. N.York(1972)

6. Water pollution, Arvind kumar, APH publishing (2004)

7. Introduction to Potable Water Treatment Processes Simon Parsons, Bruce Jefferson, Paperback publication.

8. Guidelines for drinking-water quality, Third edition, (incorporating first and second addenda). WHO report.

9. Soil pollution, S.G. Misra and Dinesh Mani, APH Publishing Corporation, (2009).
10. Soil Pollution: origin, monitoring and remediation, Abrahim Mirsal, Springer (2010).
11. Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality Edited by Nicolas Mazzeo, InTech Publications (2011).

12. Environmental Protection Against Radioactive Pollution: N. Birsen, Kairat K. Kadyrzhanov, Springer publication , (2003).

13. Environmental law in India, Mohammad Naseem, Wolters Kluwer.

14. Environmental Protection, Law And Policy In *India* Kailash Thakur google books (1997). 17. Green chemistry An Introductory text, Mzike Lancaster, Royal Society of Chemistry (2002)

NAME OF THE COURSE	ENVIRONMENTAL CHEMISTRY PRACTICAL		
CLASS	MSC		
COURSE CODE	SCHE633EP		
NUMBER OF CREDITS	2		
NUMBER OF LECTURES PER	2		
WEEK			
TOTAL NUMBER OF LECTURES	30		
PER SEMESTER			
EVALUATION METHOD	CONTINUOUS	SUMMATIVE	
	ASSESSMENT	ASSESSMENT	
TOTAL MARKS	50	-	
PASSING MARKS	20	-	

COURSE OBJECTIVES:

CO 1.	To acquaint learners with spectroscopic techniques
CO 2.	To learn how to check the purity of various samples
CO 3.	To familiarize students with the SOPs and train them in handling
CO 4.	To acquaint learners with spectroscopic techniques

CLO 1.	Apply the knowledge to decide the most appropriate method of analysis based on
	requirements.
CLO 2.	Use technical skills to work with various instruments

ENVIRONMENTAL CHEMISTRY PRACTICAL
1.To determine the acidity and alkalinity of the given water sample.
2. To determine the total solids, total dissolved solids, total suspended solids
in the given water sample.
3. To determine the salinity of the water sample.
4. Determination of sulphate. (by Benzidine method)
5. To determine the chemical oxygen demand of the given water sample.
6. Determination of Cr(VI) in industrial effluent.
7. Estimation of Mn^{2+} in water by colorimetric method.
8. Determination of pK value of phosphoric acid potentiometrically.

- 1. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 2. Standard methods of chemical analysis, F. J. Welcher
- 3. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 4. W.W.Scott."Standard methods of Chemical Analysis", Vol.I, Van Nostrand Company, Inc., 1939.
- 5. E.B.Sandell and H.Onishi,"Spectrophotometric Determination of Traces of Metals",PartII,4thEd.,A Wiley IntersciencePublication,New York,1978.

NAME OF THE COURSE	PROJECT WORK	
CLASS	MSC	
COURSE CODE	SCHE631RP	
NUMBER OF CREDITS	4	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF HOURS PER	120	
SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	-	-
PASSING MARKS		-

NAME OF THE COURSE	ADVANCED INSTRU	MENTAL
	TECHNIQUES	
CLASS	MSC	
COURSE CODE	SCHE647MJ	
NUMBER OF CREDITS	4	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	50	50
PASSING MARKS	20	20

SEMESTER 4

COURSE OBJECTIVES:

CO 1.	To understand various methods of separation used in pre-treatment of samples.
CO 2.	To understand the principle, instrumentation and applications of selective chromatographic techniques
CO 3.	To understand the principles and instrumentation of the spectral methods
CO 4	To understand the concepts and applications of the techniques discussed

CLO 1.	Explain in detail the application of solvent extraction in analytical
	chemistry
CLO 2.	Discuss analytical techniques in nanotechnology and selective chromatographic
	techniques
CLO 3	Differentiate and identify the appropriate technique of analysis for a
	sample.
CLO 4	Interpret the spectrum and solve numericals based on the topics covered

UNIT 1	SEPARATION SCIENCE	15L
1.1	Membrane separation processes: operating principles and applications of	8L
	microfiltration, ultrafiltration, reverse osmosis, dialysis and electro-dialysis.	
1.2	Applications of solvent extraction in Analytical Chemistry. Recapitulation of	7L
	solvent extraction, roles of solvent extraction in analytical chemistry, solvent	
	extraction in sample preparation and pre-treatment steps, solvent extraction	
	as a means of analytical determination.	
UNIT 4	CHROMATOGRAPHIC TECHNIQUES –III	15L
4.1	Electrophoresis: introduction, factors affecting migration rate, supporting	2L
	media (gel, paper, cellulose, acetate, starch, polyacrylamide, agarose,	
	sephedax and thin layers)	
4.2	Techniques of Electrophoresis: low and high voltage, sds-page, continuous	8L
	electrophoresis, capillary electrophoresis, zone, gel, isoelectric focusing,	
	isotachophoresis and micellar electrokinetic capillary chromatography,	
	instrumentation, detection and applications.	
4.3	Introduction to Nanotechnology: Analytical techniques in nanotechnology,	5L
	consequences of the nanoscale, (nanoparticles morphology, electronic	
	structure, optical properties) one dimensional nanomaterials (nanofilms,	
	nanolayers), two dimensional nanomaterials (nanotubes, nanowires), three	
	dimensional nanomaterials (nanoparticles and quantum dots).	
UNIT 3	SPECTRAL METHODS- III	15L
3.1	Theory and Instrumentation- recapitulation, FTNMR, 2D NMR,- FID	6L
	signal generation mechanism, Techniques in 2D NMR- homo nuclear	
	correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY),	
	heteronuclear correlation (HETCOR)	
3.2	Radio waves in imaging- principle instrumentation and applications of MRI	2L
3.3	Application of NMR to other nuclei C ¹³ , P ³¹ and F ¹⁹ spectroscopy	1L
3.4	Mass spectroscopy: recapitulation, correlation of mass spectra with	3L
	molecular structure- interpretation of mass spectra, analytical information	
	derived from mass spectra- molecular identification, metastable peaks,	
	Fragmentation Reactions	
3.5	Raman spectroscopy: Principle Theory Instrumentation, techniques(SERS	3L
	and Resonance Raman) and Applications of Raman spectroscopy	. ==
UNIT 4	RADIOCHEMICAL AND HYPHENATED TECHNIQUES	15L
4.1	Activation analysis- radiometric titrations and radio-release methods	5L
4.2	Concept of hyphenation, need for hyphenation, possible hyphenations.	1L
4.3	Interfacing devices and applications of GC – MS, ICP - MS, GC - IR,	9L
	Tandem Mass Spectrometry, LC – MS: HPLC-MS, CE-MS, MALDI and ESI	

- 1. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986)
- 2. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West and F. J Holler Holt-Saunders 6th Edition (1998)
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann 5 Ed.
- 4. Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A.
- 5. Principles and Practices of X-ray spectrometric Analysis, 2 Ed E. P. Bertain, Plenum Press, NY, (1975)
- 6. Nuclear Analytical Chemistry, D. Bane, B. Forkman, B. Persson, Chartwell Bratt Ltd (1984)
- 7. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, A series of volumes
- A Complete Introduction to Modern NMR Spectroscopy 1st Edition by Roger S. Macomber
- 9. Spectrometric Identification of Organic Compounds Hardcover by Robert M.Silverstein Wiley
- 10. Encyclopedia of Analytical Science, Editors-in-Chief: Paul Worsfold, Alan Townshend, and Colin Poole ISBN: 978-0-12-369397-6

11. Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation. Meyers Robert A Meyers

- 12. Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969
- 13. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- 14. Extraction Chromatography, T. Braun, G. Ghersene, Elsevier Publications 1978.
- 15. Supercritical fluid extraction, Larry Taylor Wiley publishers N.Y. 1996
- 16. Ion exchange separation in analytical chemistry, O Samuelson John Wiley 2nd ed 1963
- 17. Ion exchange chromatography, Ed H.F Walton Howden, Hutchenson and Rossing 1976
- 18. Chromatographic and electrophoresis techniques, I Smith Menemann Interscience 1960

NAME OF THE COURSE	ADVANCED ANAL	YTICAL
	TECHNIQUES PRAC	CTICAL
CLASS	MSC	
COURSE CODE	SCHE647MJP	
NUMBER OF CREDITS	2	
NUMBER OF LECTURES PER	4	
WEEK		
TOTAL NUMBER OF LECTURES	60	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	-	50

CO 1.	To learn treatment ore/alloy samples and determine its constituent
	metals quantitatively
CO 2.	To acquaint learners with spectroscopic techniques
CO 3.	To familiarize students with the SOPs and train them in handling

COURSE LEARNING OUTCOMES:

CLO 1.	To enable to apply the knowledge and choose an appropriate method
	for analysis based on requirements
CLO 2.	Learners will be equipped with technical skills to work with various instruments.

AI	DVANCED ANALYTICAL TECHNIQUES PRACTICAL
1	. To analyze Pyrolusite for:Fe by colorimetry and / or Mn by volumetry
2	. Analysis of Bauxite for Ti by colorimetry / Al by gravimetry / Fe (volumetry)
3	. Determination of copper by extractive photometry using diethyldithiocarbamate.
4	. Spectrophotometric determination of pH of buffer solution.
5	. Simultaneous determination of Ti^{3+} and V^{5+} spectrophotometrically by H_2O_2 method
6	. Determination of purity of crystal violet.
7	. To analyze Magnelium for Mg by complexometry.
8	. To analyze Brass for Zn by complexometric method

REFERENCES:

- 1. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 2. Standard methods of chemical analysis, F. J. Welcher
- 3. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 4. W.W.Scott."Standard methods of Chemical Analysis",Vol.I, Van Nostrand Company,Inc.,1939.
- 5. E.B.Sandell and H.Onishi,"Spectrophotometric Determination of Traces of Metals", PartII, 4thEd., A Wiley IntersciencePublication, New York, 1978.

NAME OF THE COURSE	INTELLECTUAL PROPERTY RIGHTS AND CHEMINFORMATICS		
CLASS	MSC		
COURSE CODE	SCHE648MJ		
NUMBER OF CREDITS	4		
NUMBER OF LECTURES PER	4		
WEEK			
TOTAL NUMBER OF LECTURES	TURES 60		
PER SEMESTER			
EVALUATION METHOD	CONTINUOUS SUMMATIVE		
	ASSESSMENT	ASSESSMENT	
TOTAL MARKS	50	50	
PASSING MARKS	20 20		

CO 1.	To achieve a common understanding of IPR laws in India and its economic value.
CO 2.	To encourage innovation at the college level and encourage the filing of patents
CO 3.	To provide a basic introduction to fundamentals and applications of cheminformatics
CO 4.	Introduce students to python, RPi, IoT to understand working of IoT controlled sensors

CLO1	It will bridge the gap between industry and academia and facilitate		
	technology transfer.		
CLO2	Understanding IP issues around knowledge transfer can help get discoveries from the		
	lab to the marketplace.		
CLO3	Explain basic concepts of cheminformatics and will be able to implement computation		
	of molecular descriptors and chemical similarity.		
CLO4	Use Python for understanding cheminformatics software, IoT, Design various		
	application based experiments using sensors		

COURSE LEARNING OUTCOMES:

UNIT 1	INTRODUCTION TO INTELLECTUAL PROPERTY		
1.1	Historical Perspective, Different types of IP, Importance of protecting IP.	2L	
1.2	Patents: Historical Perspective, Basic and associated right, WIPO, PCT system, Traditional Knowledge, Patents and Health care-balancing promoting innovation with public health, Software patents and their	3L	
	importance for India.		
1.3	Drafting of Chemistry patents (Product and Process); Novelty Check. Understanding the importance of patents from a chemistry point of view and its future scope. Drug discovery, development and patents.	2L	
1.4	Industrial Designs:Definition, How to obtain, features, International design registration.	2L	
1.5	Copyrights:Introduction, How to obtain, Differences from Patents.	2L	
1.6	Trademarks: Introduction, How to obtain, Different types of marks – Collective marks, certification marks, service marks, trade names etc.	2L	
1.7	Geographical Indications: Definition, rules for registration, prevention of illegal exploitation, importance to India.		
UNIT 2	TRADE AGREEMENTS	15L	
2.1	Introduction and Historical Perspectives, Scope of Protection, Risks involved and legal aspects of Trade Secret Protection.	2L	
2.2	Integrated Circuit Layout Design Act	2L	
2.3	IP Infringement issue and enforcement: Role of Judiciary, Role of law enforcement agencies – Police, Customs etc.	2L	
2.4	Economic Value of Intellectual Property: Intangible assets and their valuation, Intellectual Property in the Indian context – Various Laws in India Licensing and Technology transfer.	2L	
2.5	Different International agreements:	5L	
2.5.1	World Trade Organization (WTO):		
	i)General Agreement on Tariffs and Trade (GATT), Trade Related Intellectual Property Rights (TRIPS) agreement.		
	ii) General Agreement on Trade Related Services (GATS) Madrid Protocol.iii) Berne Convention		
	iv) Budapest Treaty		
	Paris Convention		
2.5.2	WIPO and TRIPS, IPR and Plant Breeders Rights, IPR and Biodiversity. Hague Agreement, Lisbon Agreement		
	WIPO performances and Phonogram Treaty		
2.6	Indian IP Regime: Overview of IP laws in India, Major IP Laws in India, International treaties signed by India.	2L	

UNIT 3	INTRODUCTION TO CHEMINFORMATICS	15L
3.1	History and evolution of cheminformatics, Use of Cheminformatics, Prospects of cheminformatics, Molecular modeling and structure elucidation.	5L
3.2	Representation of molecules and chemical reactions: Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and Sdf Files, Libraries and toolkits.	5L
3.3	Searching Chemical Structures: Full structure search, sub-structure search, basic ideas, similarity search, three dimensional search methods, basics of computation of physical and chemical data and structure descriptors, data visualization.	5L
UNIT 4	APPLICATIONS OF CHEMINFORMATICS	
4.1	Prediction of Properties of Compound, Linear Free Energy Relations, Quantitative Structure – Property Relations, Descriptor Analysis, Model Building.	
4.2	Introduction to drug design, Target Identification and Validation, Lead Finding and Optimization, analysis of HTS data, Virtual Screening, Design of Combinatorial Libraries, Ligand based and Structure based Drug design.	
4.3	Application of Cheminformatics in Drug Design.	
4.4	 4.4.1.Python 3 basics, Important difference between python 2.x and python 3.x with example, Keywords in Python, Namespaces and Scope in Python, Statement, Indentation and Comment in Python 4.4.2. Structuring Python Programs, How to assign values to variables in Python and other languages, Decision making, Taking input in Python Taking input from console in Python, Taking multiple inputs from user in Python, Output using print() function and Output Formatting, File handling in python 4.4.3. Introduction to Nodemcu and Raspberry pi and Various IoT controllers 4.4.4. Installation, and Input output basics of in Raspberry pi and nodemcu 	7L

REFERNCES

- 1. Andrew R. Leach & Valerie J. Gillet (2007) *An Introduction to Cheminformatics*. Springer: The Netherlands.
- 2. Gasteiger, J. & Engel, T. (2003) Cheminformatics: A textbook. Wiley-VCH
- 3. Gupta, S. P. *QSAR and Molecular Modeling*. Springer-Anamaya Pub.: New Delhi.

NAME OF THE COURSE	FORENSIC CHEMIST	RY	
CLASS	MSC		
COURSE CODE	SCHE644E		
NUMBER OF CREDITS	2		
NUMBER OF LECTURES PER	2		
WEEK			
TOTAL NUMBER OF LECTURES	30		
PER SEMESTER			
EVALUATION METHOD	CONTINUOUS SUMMATIVE		
	ASSESSMENT	ASSESSMENT	
TOTAL MARKS	- 50		
PASSING MARKS	20 -		

CO 1.	To introduce students to the fundamental concepts and principles of	
	forensic science.	
CO 2.	To explore the different sub disciplines of forensic chemistry, like fingerprint analysis,	
	DNA analysis, toxicology and trace evidence analysis	

CLO1	Explain the role of forensic science in society.
CLO2	Describe proper methods for crime scene investigation and evidence collection.

UNIT 1	FORENSIC CHEMISTRY-I	15L
1.1	1.1.1. General Introduction to Chemistry in Forensic Science	3L
	1.1.2. Forensic Analysis of Blood evidences	
	1.1.3. DNA profiling	
1.2	General Introduction to Analytical Forensic Toxicology	1L
1.3	Forensic Toxicology branches	1L
1.4	Drugs of Abuse-structure, metabolism, identification	7L
	1.4.1. Narcotics - heroin, morphine	
	1.4.2. Stimulants - amphetamines, caffeine, cocaine	
	1.4.3. Hallucinogens - LSD, cannabis	
	1.4.4. Depressants - benzodiazepenes, barbiturates, mandrax	
	1.4.5. Performance enhancing hormones, drugs	
	1.4.6. Forensic Analysis of Alcohol intoxication	
1.5	Classification & Analysis of Poisons	2L
1.6	Preparation of post-mortem samples for Forensic Analysis	1L

UNIT 2	FORENSIC CHEMISTRY-II	15L
2.1	Forensic Chemistry in Heavy Metal Toxicity	1L
2.2	Fire Investigation	2L
2.3	Explosives Analysis	2L
2.4	Forensic analysis of Food Adulterants	2L
2.5	Trace Evidence Analysis - soil, glass, paint	2L
2.6	Introduction to Impression Evidence Analysis	1L
2.7	Questioned Document investigation	1L
2.8	Fingerprint analysis	2L
2.9	Ballistics	2L

- 1. Forensic Chemistry, Suzanne Bell, Pearson Prentice Hall Publication, 2006.
- 2. Forensic Chemistry, David E Newton, Infobase Publishing, 2007.
- 3. Criminalistics an Introduction to Forensic Science, Richard Saferstein, Prentice Hall Publication, 2011

NAME OF THE COURSE	FORENSIC CHEMISTRY PRACTICAL		
CLASS	MSC		
COURSE CODE	SCHEP644E		
NUMBER OF CREDITS	2		
NUMBER OF LECTURES PER	2		
WEEK			
TOTAL NUMBER OF LECTURES	30		
PER SEMESTER			
EVALUATION METHOD	CONTINUOUS	SUMMATIVE	
	ASSESSMENT	ASSESSMENT	
TOTAL MARKS	50	-	
PASSING MARKS	20	-	

COURSE OBJECTIVES:

CO 1.	To provide students with hands-on experience in laboratory techniques
	used in forensic chemistry.
CO 2.	Develop critical thinking and problem solving skills necessary to analyse evidence and
	draw conclusions

CLO1	Analyse various types of forensic evidence using appropriate methods.
CLO2	Interpret the results of forensic analysis and draw conclusions about a case.

COURSE LEARNING OUTCOMES: The learner will be able to

FORENSIC CHEMISTRY PRACTICAL	
1.Forensic Blood Analysis - presumptive tests	
2. Forensic Saliva Analysis - amylase test	
3. Thin Layer Chromatography of drugs of abuse	
4. Colorimetry for Alcohol estimation in blood	
5. Screening Tests for Food Adulterants	
6. Soil Analysis - pH, colour, particle size distribution	
7. Paper Chromatography of Pen Inks in Document analysis	
8. Chemical methods for Fingerprint analysis	

NAME OF THE COURSE	GREEN CHEMISTRY	
CLASS	MSC	
COURSE CODE	SCHE644E	
NUMBER OF CREDITS	2	
NUMBER OF LECTURES PER	2	
WEEK		
TOTAL NUMBER OF LECTURES	30	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	50	-
PASSING MARKS	20	-

COURSE OBJECTIVES:

CO 1.	To introduce analysis of herbal based products and their standardizations
CO 2.	To emphasize the importance of Green Chemistry.

CLO1	Describe qualitative and quantitative estimations of herbal based formulations and
	interpret the results.

CLO2 Identify and use green reactions/synthesis in future.
--

UNIT 1	SEPARATION, ANALYSIS AND STANDARDIZATION OF HERBAL BASED PRODUCTS	15L
1.1	Herbs as a raw material: Definition of herb, herbal medicine, herbal medicinal products, herbal drug preparation, sources of herbs, selection, identification and authentication of herbal materials, drying and processing of herbal raw materials.	6L
1.2	Extraction of herbal materials: Choice of solvent for extraction, methods used for extraction and principles involved in extraction.	3L
1.3	Standardization of herbal formulation and herbal extracts: Standardization of herbal extracts as per WHO cGMP guidelines, Physical, Chemical, Spectral and toxicological standardization, qualitative and quantitative estimations.	6L
UNIT 2	GREEN CHEMISTRY	15L
2.1	Principle and concepts of green chemistry: sustainable development and green chemistry, atom economy, examples of atom economic and atom uneconomic reactions, reducing toxicity	4L
2.2	Organic solvents: environmentally benign solutions, solvent free systems, supercritical fluids (only introduction) Ionic liquids as catalysts and solvents	4L
2.3	Emerging Green Technologies: photochemical reactions (advantages and challenges), examples. Chemistry using microwaves, sonochemistry and electrochemical synthesis.	4L
2.4	Designing Greener Processes: Inherently Safer Designs (ISD), Process intensification (PI) in-process monitoring.	3L

- 1. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- Extraction Chromatography, T. Braun, G. Ghersene, Elsevier Publications 1978.
 Green chemistry and catalyst, R. A. Sheldon, Isabella Arends, Ulf Hanefeld Wiley VCH verlag GmBH & co.

NAME OF THE COURSE	GREEN CHEMISTRY	PRACTICAL
CLASS	MSC	
COURSE CODE	SCHEP644E	
NUMBER OF CREDITS	2	
NUMBER OF LECTURES PER	2	
WEEK		
TOTAL NUMBER OF LECTURES	30	
PER SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	50	-
PASSING MARKS	20	-

CO 1.	To provide a basic introduction to greener methods
CO 2.	To make the students aware of the different methods

CLO1	Design a green method of synthesis/analysis.
CLO2	Choose an appropriate green method for the experiment.

COURSE LEARNING OUTCOMES: The learner will be able to

	GREEN CHEMISTRY PRACTICAL	
1.	Microwave: Microwave assisted one-pot synthesis of some of the organic derivatives	
2.	Atom economy: Calculation of atom economy of the following reactions	
	Preparation of propene by two methods- from tertiary amines and propene.	
3.	Use of enzymes as catalysts- Benzoin condensation using Thyamine hydrochloride as a catalyst instead of cyanide.	
4.	Alternative sources of energy- Photoreduction of benzophenone to benzopinacol in the presence of sunlight.	
5.	Synthesis of acetyl derivative of amines/phenols using grind stone method.	
6.	Assay of Riboflavin in tablets using uv-vis spectrophotometer.	
7.	Determination of paracetamol using colorimetery.	
8.	Determination of sulpha drug in tht given sample.	

REFERENCES:

- 1. Vogel, A.I., Tatchell, A.R., Furnis B.S. Hanaford, A.J., J & Smith P.W.G, *Textbook of Practical Organic Chemisry*, Prentice-Hall, 5th Edition, 1996.
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.
- 3. Ahluwalia, V.K. & Aggrawal, R. Comprehensive Practical Organic Chemistry, University Press

NAME OF THE COURSE	DISSERTATION	
CLASS	MSC	
COURSE CODE	SCHE601RP	
NUMBER OF CREDITS	6	
NUMBER OF LECTURES PER	6	
WEEK		
TOTAL NUMBER OF HOURS PER	180	
SEMESTER		
EVALUATION METHOD	CONTINUOUS	SUMMATIVE
	ASSESSMENT	ASSESSMENT
TOTAL MARKS	-	-
PASSING MARKS		-

ASSESSMENT DETAILS:(this will be same for all the theory papers)

CONTINUOUS ASSESSMENT (50 marks)

For Major Papers

- One activity to be conducted of 25 marks Activities could be Test/ assignment/ project
- One test of 25 M each

SUMMATIVE ASSESSMENT (50 marks)

For Major Papers

- Q.1. Unit 1 : Attempt any two of the following. (2 out of 4) [10marks]
- Q.2. Unit 2 : Attempt any two of the following. (2 out of 4) [10marks]
- Q.3. Unit 3 : Attempt any two of the following. (2 out of 4) [10marks]
- Q.4. Unit 4 : Attempt any two of the following. (2 out of 4) [10marks]
- Q.5. Attempt any two of the following (2 out of 4) [10 marks]
- (1 question from each unit)

PRACTICAL ASSESSMENT (50 marks) (for papers with practicals)

Practical examination of each paper for 50 marks will be held for three and half hours

Practical40MJournal5MViva-voce5MTotal50M

CONTINUOUS ASSESSMENT (50 marks)

For Elective Papers Two Tests of 25M each Subjective test Attempt any five of the following (5 out of 8) [25 marks